diff --git a/README.md b/README.md index 9cf088903..4ed4d3499 100644 --- a/README.md +++ b/README.md @@ -94,12 +94,12 @@ column and the primary key (`guest_email`). ## Synthesizing Data Next, we can create an **SDV synthesizer**, an object that you can use to create synthetic data. It learns patterns from the real data and replicates them to generate synthetic data. Let's use -the `FAST_ML` preset synthesizer, which is optimized for performance. +the [GaussianCopulaSynthesizer](https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/gaussiancopulasynthesizer). ```python -from sdv.lite import SingleTablePreset +from sdv.single_table import GaussianCopulaSynthesizer -synthesizer = SingleTablePreset(metadata, name='FAST_ML') +synthesizer = GaussianCopulaSynthesizer(metadata) synthesizer.fit(data=real_data) ``` @@ -131,11 +131,15 @@ quality_report = evaluate_quality( ``` ``` -Creating report: 100%|██████████| 4/4 [00:00<00:00, 19.30it/s] -Overall Quality Score: 89.12% -Properties: -Column Shapes: 90.27% -Column Pair Trends: 87.97% +Generating report ... + +(1/2) Evaluating Column Shapes: |████████████████| 9/9 [00:00<00:00, 1133.09it/s]| +Column Shapes Score: 89.11% + +(2/2) Evaluating Column Pair Trends: |██████████████████████████████████████████| 36/36 [00:00<00:00, 502.88it/s]| +Column Pair Trends Score: 88.3% + +Overall Score (Average): 88.7% ``` This object computes an overall quality score on a scale of 0 to 100% (100 being the best) as well