-
Notifications
You must be signed in to change notification settings - Fork 1
/
Offset Curve basic test.nb
408 lines (395 loc) · 18.7 KB
/
Offset Curve basic test.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 18952, 400]
NotebookOptionsPosition[ 18155, 376]
NotebookOutlinePosition[ 18519, 392]
CellTagsIndexPosition[ 18476, 389]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Offset Curves", "Section",
CellChangeTimes->{{3.759016569207409*^9,
3.7590165711147776`*^9}},ExpressionUUID->"18daee4e-4a64-48cb-a553-\
906d7c864554"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"OffSetCurve", "[",
RowBox[{"curve_", ",", "dist_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"crv", " ", "=", " ", "curve"}], ",", " ",
RowBox[{"d", " ", "=", " ", "dist"}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"funX", "=",
RowBox[{"crv", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"funY", "=",
RowBox[{"crv", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"dx", "=",
RowBox[{"D", "[",
RowBox[{"funX", ",", "u"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"dy", "=",
RowBox[{"D", "[",
RowBox[{"funY", ",", "u"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"offsetX", "=",
RowBox[{"funX", "-",
FractionBox[
RowBox[{"d", " ", "dy"}],
SqrtBox[
RowBox[{
SuperscriptBox["dx", "2"], "+",
SuperscriptBox["dy", "2"]}]]]}]}], ";", "\[IndentingNewLine]",
RowBox[{"offsetY", "=",
RowBox[{"funY", "+",
FractionBox[
RowBox[{"d", " ", "dx"}],
SqrtBox[
RowBox[{
SuperscriptBox["dx", "2"], "+",
SuperscriptBox["dy", "2"]}]]]}]}], ";", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"o", "=",
RowBox[{"{",
RowBox[{"offsetX", ",", "offsetY"}], "}"}]}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{"o", "=",
RowBox[{"OffSetCurve", "[",
RowBox[{
RowBox[{"{",
RowBox[{"u", ",",
FractionBox[
SuperscriptBox["u", "2"], "2"]}], "}"}], ",", "0.5"}],
"]"}]}]}], "Input",
CellChangeTimes->{{3.759024833694626*^9, 3.759024920712983*^9}, {
3.759088454979889*^9, 3.7590885285745296`*^9}, {3.7590885657190313`*^9,
3.7590885764603844`*^9}, 3.7590887416158905`*^9, {3.7590894597444534`*^9,
3.759089461952524*^9}},ExpressionUUID->"a9ffcef9-d1d4-4139-b3be-\
3880a51512f3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"u", "-",
FractionBox[
RowBox[{"0.5`", " ", "u"}],
SqrtBox[
RowBox[{"1", "+",
SuperscriptBox["u", "2"]}]]]}], ",",
RowBox[{
FractionBox[
SuperscriptBox["u", "2"], "2"], "+",
FractionBox["0.5`",
SqrtBox[
RowBox[{"1", "+",
SuperscriptBox["u", "2"]}]]]}]}], "}"}]], "Output",
CellChangeTimes->{{3.759024921760369*^9, 3.7590249360912137`*^9},
3.759024973999922*^9, 3.7590875137013464`*^9, 3.759088142921146*^9,
3.7590882353362675`*^9, {3.7590882854798036`*^9, 3.759088331014035*^9}, {
3.759088538189912*^9, 3.7590886048388195`*^9}, {3.7590886987214823`*^9,
3.759088743107396*^9}, {3.7590888177012024`*^9, 3.7590888322301445`*^9},
3.7590891149175406`*^9},
CellLabel->"Out[58]=",ExpressionUUID->"3ce9cc8b-583c-4934-a04d-f06883dfd6af"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"u", ",",
FractionBox[
SuperscriptBox["u", "2"], "2"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
RowBox[{"ParametricPlot", "[",
RowBox[{"o", ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]}], "}"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.7590172529118724`*^9, 3.75901726823098*^9}, {
3.759017298658431*^9, 3.759017374761791*^9}, {3.759018307927229*^9,
3.7590183614875507`*^9}, {3.759018459824648*^9, 3.7590184653102236`*^9}, {
3.759018503091443*^9, 3.7590185059208345`*^9}, {3.7590185581462965`*^9,
3.759018561170374*^9}, {3.759024654700966*^9, 3.7590247179408293`*^9},
3.7590248642989693`*^9, {3.759024947795294*^9, 3.759024988258092*^9}, {
3.7590875456587453`*^9, 3.7590875507745075`*^9}, {3.7590882481244154`*^9,
3.759088276020714*^9}, {3.759088343435281*^9, 3.759088354820798*^9},
3.759088556379945*^9},
CellLabel->"In[40]:=",ExpressionUUID->"f99ea793-a79c-47cc-a904-01d8eda21454"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], FaceForm[
Opacity[0.3]], LineBox[CompressedData["
1:eJw1mHc4FX4bxu2VPRqUUPwSURQaPJLMKFuS2TKTTfZW6MQhm+zVMUL2F5kZ
x8oo45SsnxEZmee83ut63+ef+7qe6/7c/z6D3+K59mMKMjIydnIysv/q/6rx
fyp/s4YpdWeXhHj1eWg2NkkQ4MxzY32ThFyfS6UvLJKAakHKfXaRhPCLNpix
ERLQD9itdo+QkNiRIbPuYhKwZ30nJBSTUNyv+KYDUxKcVfnUJGlKQiwUmwFv
moigirEPfNpARLi5Larn4QeQE7tJajI/QImkLEWj3V347Xf/vPTJfcQ6Sm3j
UboNoaI4HpaJXSTmV5ItHrkFEho8NN8CdlBOdWfNa/0N+KLzOBXBNorhjrHl
NfsDLvh28fgfW0jFLifvqfEq2B/hCRsM30TOT3Eh9sQl0L2gHiWsuoECNIye
S1UtgEZLTKTj8h+UOWYRQ/1oFiRvVl8bzltDCfL4b3Xe0/DUB49Ltl5FD6Pz
EWmEACbm+9JFAiuIm/6N5znzcWh/y2Gvm7qI3n8xGZcdHgH9ogdxP6fnUbFg
YMN540EIVA6+IyU1i2Q1C8l7vvZCOO6ZCaqcRjJ3er5cUOuACpKXhRj5D4R7
mpwbwN4M52X211n/EhCPoxsl/UETpDq8DF5fIqBYah3h5LkmCPnhkVc1SkCV
7UcG5+uaQP+z64pCCQEVVgWm8jxrgq0QB08DUwIy1YjkmmtshOcnO86Sv5xC
84HMdCLbDeB8NS4oe30chRSLtqZfqgHcJaGR6olxhP+e/ZqaoQbmhCuFe9vH
kWy3nlHYz2ow4h7u3UoaR9E791nnY6oB9rhOqCiOI7aQ9UmW7SpgqI/98C/2
O3rxxIaGvO0TpMvHDotLfUMfFe19rNwr4JuMoLAi3zc0t4nU3+hWAMelipeG
DN+QvI0K/+DFCgjh/8rnPzmGbDIOfpUvlIMNBZfNQMgYilPY6SUYl4NUC5bk
PDKKNNSuXPim8hG6lLHnatxHkKxbI7uOdCkw3InJvWw5gprkaQF/rBRU7kUL
FWuMoIT33CbPtkugxRBzNktgBKkI5zqvVZdAg1UEX1T3MMq/Z0BpKlcCJa+D
jlvwDaM+4j+adxNwgMU70zF0DKHe6gOWyYMCGBh0Cg0qG0LnBEp5ONoKgHXU
kYaUPIREqw8YA6IKIJLgQLXxYgjJOFmkM/EVQMiaLdkkzxDSOGb06vvtfHDn
eLxd+nwQuZ+msNFOzoWHBnrz948NoD7xK6ZFzlmwKyzBrkQ5gKIw1romylkQ
v898Q+J3P6rrIxUpcGfBwPuONwzt/cjkt2pYRmMmKC1dl6517Ued2cZzDSyZ
IOYvEHJyuA9d/ftS2frTeyDqTSk3COMRzX3F08fup4LMXnxSHDke7W3m/OA4
kgqO6dq/7cd6UbdWp7VLfQrM/tsadzq8F5EpafQ/OZMCeN+iGb/5HlTNp/2b
YiMJ0vM9Am/ldiPjtLvP+fISQOGAA3Wc/YKcm074rj6IBd7S1Rew04nqWaeD
6bhiYe9Rz9nKnk50SeY25bteLJR3h7zKdO1EWJYh82O3sCCUvKPn09GBNAk8
uOxLMcBwfWpJ0rYdRdHrBm6ffQuzK7VpBfLtyOF7wbrbDAY+Z8Rr83O1I5/g
xG92ORjwYtCuYm5oQ5wWioz1whhYGWsJXGBpQ9aeQQf9NlEw4F7AnfaxBQVv
dcuvdLwCnGhoD1dYC/JOi92oNXwFrwmWfhHGLah7+02s60I4KKqcmvWgbkFm
dSfSypjCofIYplTX4DOyD/Xvu20eComVLioMe03o7IWMotHLQdA677/0b1AD
+mN3F2vG4w274WUHqZINaNE40vyUvxeIiUwz6/ysR8rJ1Dfd5l9CnJ3ipVqo
RyKM2VIUdZ7w5A+N6+vdWpRbkrbv7OoOdPuvSSIO1ciRMWi9R8YZbqTUsRJ4
qxGO/OmvB1VO4CC3zI/tqUKaykFzIVedYNRPU3H/fBWq+2x3tlzeEfKp2cK7
ZyqRpv++u42FA6ixxLHbPShHHrzs3EmzVuBT0naGn6EcveQSuHX/hBWUaf29
/LXqI1L6kIPRuvsMuLGGBrJHP6IriClhteUJLB7nSWbqL0Xetjqm88OWwFej
/qHJtxS1W9EVuZ2xBN0HXg0uYqVomFbi1E0nC6hLmSBMvC5Bd4WmbQNOmsPx
2/LqxpE4dG/MI9Bb5CH4hb63a/n3A3pGuPBIbvsBzHdSYERVPiA24a5Ipy4j
qNZsHdqnKELHfZtqrwUbgpGhmkmKez5al00JuKGkC82JhX7Uw3kIq5VUkKak
AyITjJl2knmoIyeAx01DG/bN8XOyKznoJxfTaID9PUix0X0xaZmF2pgE3Hn2
VUGUWeyvW0smqm2tsqK3VYG6ElpvNsFM1J81Z2U6rwTjmzVhirPvkf4oU9wt
GkWwjccyTyq9Ry2i1M39uQqwd80e65abjjTzsPvtejfhMtkteb3+VOQhvH1t
7IMs6N7eUg+LTkEKR/JopXSvg9OrfINanWR0+3rYmgXHVSjjZH3OP5yAiMFj
Jy+MX4b++589dd/Fo7J0NZMvMxKwmuoaEmr4Dr2nX6qTprsE4sITKcvfsOhx
hG8mtbgIaNpj8vmSY1Cu5C+WJrpzYP/xVoXOw2hk7pZfeZJTECK3txpDeN8i
jAH+3XEtATB8qZvghN4gq7zCJ1a+p+EddW3J2M1I9P6bB/tPxA3Db/g7oOUV
artNL5lkeRQ4ucOmspXC0NeF+x1Ya3bQyVrZOtIZjHIiR7JS8pkgWkyP2VE9
EHlWe2dEK9JCX1Wt4GiPHxI0yAmnyyEH3hBFT690L2TYk1FOTNqRS0pky1fJ
dkNH+w7OrbivyR0vnhzhLHBEjHa1hIbWGTmRUAOm5oc2KJuCQUTt6YicUMma
tdFTc7TlZN50faVZzu+RuEDXZw2URl4iFFWcJCf6G9+bI3IZTP2tT8bbWckN
5/tuV/01hK8/n53jePlRbrUwm1fR8QmY6/Oa2Xjj5V42BRP0LjvA9eEja/pW
BDliUVVpuLgLKE6eKNFnWpLzi18MqD/vCSPD8QwfHm/KUQbx6q4J+oJ8hjCm
RIso9/lTXnQ0awDg8kw3jB5TQdAFhZeiUUHA8Uf0lckzBlDK/G7ZdiQUCvUb
gtbiWYH2hMsds/BwkLL75+qGGSd0RDFf2aWJgOI6LQvpiOPwiirvFDYoCo7e
liWr5T4FQvV8lMf8MXCF0iUcaPhhTqJmsYQYDQsJt9R/RQhBxzINwVsWC1v4
WsrcRGHIy9MZUvOKBbcM7Bb9N1Gw5l2u+7XzDhyYy2+Pbl0CtbGrpaUyCWBh
UXp0lyAJItiQbB+3RMBQTVEtTV+BJXq+qOObyZAs2SUjf/ka9LTYBsxIpoJX
Y7hPhv8NwPlWu5Y5psG7JPcfQ3NyUOWZLy60nQ6Q6kTSJd0Ej1WF440umRDG
SdXNUKgMZhwTXB8EsmCZKm5iT18VlKTcOBLxWcBtc2EshE0dOL0KmZ2Fc2Ak
3jbKukwTSmg5qc9N5MHMjTj3ci0deHceR8H1Kh/kGV3yOS10wUdDhYxCugD8
4vTxTR56oB7jtfcdUwi47/y7FMgAZnln1t4o4qD93FgX33tj6L7p+9trDQcq
+J6s+cWH8PHRiWWr1GIovdjqeCBrCvJfhTb4vUrgGPvkFs2+GTDzPPi997UU
Np/MiM/8sIT8nM8zxeHlcC7uSuKosTWcrMI8EiKUw9vGVrGsGzaA6Xw4nSxV
AfYqI7JH+WzBdekvIXy6ArwcfLqW1+xAUUJ03FL2ExAx9toVBAeYqscOHFur
BhnqldweWhfQxptrRSnXABnNTaU5rAu0EcT6qFJrILBiiH/ojCsUUXb2rKnV
QhlfA+YfZTfwVD3o6Mqqg8//JGhUZHoA19fHyNcQQer281u25T7A/KE2Wjwf
gbI0a6Gaji/QBLM9mdpBcGPXexut+8LLRJOQNI1GCKExz/iU7Ae2agwXSCuN
ICjpqrW66A8aBeaeDZeaIX7917XQkiBQi2N8dNSoGfSu8Kd8YAwGpYBPGvYB
zSB9VdExzSoY5IyY+HkHm8E+VM5lRjAExBiq272dP0O+LNXkbm4osFizcsl+
agFDtqFr6gOvgFG/loidagEfF6+uc9dfA53Ck/kl2lZoTzqC7896DWTcdbXJ
hq3QIzYpFuIZAaudTy32d1ohx15Xy108CvqFUXHtjXboLGhmbZrCQMyCndq1
5k7gN/P6y1WHhaW2zaH15U64+bzlaSVFLChleZt+OPEFJkvq9HpVY2HXJNKZ
78UXCOuqL3g0FgtmQ0WpNHxdkGpCcVWEGAdiaPHPgHc3EPaws6dNEuAL1irJ
5ioecOyE4Fy3VDjruCYo+BgPEi/EiqR7UsHnrkfJJAYPFyku3IMzaXCJIbxV
ax4PybXX2Cr60qAbhv4mqffBKaXu6ynx6SBZsc4fsNsHtwdw1vpUGUCeLuGq
aTgA1aMh/76jy4a8AFqWVrsBcMHJuC9dzYZ7j8dzrwcOQCe9TZKnTTaknw8Z
O4cbAEktrYxb+GyQrxi7QUk1CIxnzpaFJeSA3xc/yqriQegf+Dk2KZMHpI1e
DD/tV8izaFGtzSiEA1Wbwo2KEejij9BLfFsKSiYWCTudI4dzpDhJq7gUMI73
Q4kTI3A0TWiFv6cUBJKULeloRuHxMHsVE33Z4T55huek/ihwORGm2ALKABM1
/urW1ig0PLrn2+3+EQQGNayjpb7BP8KBBwweFaBsfFH44qdxsJC6/LeopRrk
FmLnZrrHIa+P4m7ZYjVIue5lJ/0cB66MTZ6v7DUghGkToGWeALN/lbmczGuA
psX45OSjCShnTQtmJauFNpFwlgj2STAuP/awX6EOlPZ+bM7ZTUGugcSc9WQD
nOlR/XGX/QdwhdKUE6WaQTX9pvZA4jSM74+kRlJ3QP8fgytvjs5Cn0HIe2Gf
XpB8ICv0pGMeKnj8pP0uDULd32e1tHcWYVnioIRcdQROF1iafKZeAaxgqRH+
/DjoqgwMZKmswq8fxW4x0QRQ3/MXpw5bg5XgUw/fXJkGsasnYhx//oHchvky
GrVZEHw7qNIquAHk9yjM2kwWgN7ZhVowaBMGjwS9Pft7CVLjhPb4x7fA0q2S
MUF3FZQHdxWoTm3D0GWJ8nSRPzCeWPl23X0HeHlK6luVNiDYK1aio34XWuaX
vn8x3IKplEDGa/t70OTXTfvEYxuE1O4vV+kdgMCLrj7FX7vgx6rNdyqeCAp2
T0vp5Q9ArqOvsC6FCG97v6p2qR3Avu9daePMwztbRWI86pBz/31HMwlHhK2g
ihUemwNw6FX2OtFKhFtnZr5oxB2AWYTsKNcfImSvz5uyLh+APJ0whvkOCd5O
B+yzJhOBiHJ5cFokYNUuH2DLJUKdm1CuhgEJdkcHMzjLiCAzd6YhwoIE9Bcn
LvJ1EOFiG+8SgwcJTlCeoLq7QQS+IE4V2hwSUMleCT2iQYLJ6zGDOYUkOCmh
si9iSILkdTZTpVISpIKqjaYlCY5bsrgG1x36MrmkEw5zWBUYsigHSaD1diRY
6TCndydMPHOUBJWqD764HnIRpbS1CpMkCOLuocs/5Oj4qQf8F0hgTP3SieOQ
axsNfMj/mwRPT39KU/+vD0Ox0LhBgu9aP1qDD30KKv7OZrskqE7emWk67P//
D/J//Q+bi5EE
"]]},
Annotation[#, "Charting`Private`Tag$22343#1"]& ]}, {{}, {},
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJw12Hc41e3/APBzkNSDJBUeKys7Qii8DyokKYQnsnoUaZAIRWSUvaJhZBOi
jKy4jciMrEric+ydEU5C3/u5rt/vr3O9rvPH57rv9/x8DtjeNLSjI5FI7GQS
6b/fYIbI8CNfaGhwy9xiqZlMsc7qqXbopqFi/r/nRBrIFKNPnxgSP9KQjJKf
8YUaMkX3HV8XfQMN+cyZZzW8JVPW5YVcut7Q0CuuiIuZaWTKtOnMZ5cQGrJc
+M0a6UWm8B4+5fZBnYaQJnsSw2EyhZwpYF+csYbyqzJkXRJJlOoHYc9EzFeR
6eb3iZb2LeCbNHhiIraCwmTvikZkbkDf7WTfB5vLSPiGDkkmYx0U53d2fq1c
QktvddoL42jwy+RUl1H0Ijq0lPFqe9MqXGQf2nHUaAGtF3tFMS79hNfaBopJ
x+YRj16xr9fxZUgOnlvRpptFsl65Dy53LoJ1v7FUa+oUsr1rLCNqsQDjlsz7
NNwmkK1Jbe/ksXloC6N7tWQ1hvwVhri+082CW/ioXLDECGKJQpdd+6ZgPj7F
n1OCikS3TfTObp8Ey8y3YwqCg0jtThejosE4UFXTClWk+1HJQeq8Xv8olL3O
rM1P70PkhDTXkTcjMCliVHx0qwv9dJY/lZUxDHceHjOiLXShIptVV8HUYfhi
9Su/bKQLvVuqcUlOGgaVsehEjeYu5GYlMJz+ZBgkJg6b337chfZv9dzqCBqG
JNPIWxclu5Aj80R2zo1hmLmoGa5u/gkZ337j6nJ0GISPv1F3DexANgULkbz9
VDA722Cn6NiBum7Hd+74TAXGt12Lvw060FfOSd5f3VTQ+NaomMDVgZDfqwGi
nQrsyoYm4q8+IjHV6uaeWiqYFi/Juva2o2gWLVP9HCpQ67I+tkq0ocUZ3j53
LypEn3zy0oStDT1gS3N/70mFg60FDRMrrUhDWItujzsV7vDrVvLUtiKlD3MN
Zbfw8+uUnD6ZtqJhnphZUXsqzLXNhv4b2IIy/zxOCzWignt6fYLwZBM6pNzL
7ipFBcGBLOrMxybEm+0iLCqBnwewXFbShE4UnBj4epAK3yrzXf71a0LbazpV
dIWoUKejkUPib0JqMk9DtLmpUH9hfFDP9AM6LpX+oJaJCgGHr8b/3daAJHvq
H6ZOENCepFzypKgBxRUHcWWOEfj+anS44hvQtC29VN4IAYvuU51SVxtQ97Tj
RzREQMRC6a5Ypga0Fh4zyfCFgFZbswdXTr5Hu5Zkbm5rJmDJ17Vio6EOMbWy
VH/OI8AvVPpsZUEdint/cuNELgHR37j0vJ/VIQvP8zpvXxIQVMX57+7rdUik
14gxMZMAoV3mLY4cdWj/2Uckv2QCvuaRYucv1SIH3xbh148JMJKqeMjBWIMG
Ow5vPPImYC11ubyQQMhcN++Ykhf+fyje+HgJQq1VPdcm7hKQGhmpet8SoR+O
ncn6HgQcKGJnMHpTjbjIY0pytwmgP2hX4WhWhVgNueyNrxKwn7+TRyKvAjE9
bODfZkZAn7/FQVbvCnT3xfS7LyYE1NeLma0bVCDBkJf++ecJSOcOJM0sl6Pm
8b2R1kYE8Fe2KkqplqMvje13B88QIHo6zET4Yyk6HfK8m3KSgIq3T/0DkktR
a1tk9pETBPwV6Cs0f6sUSfOLP5M5TsArmxX/3v2laDIqt1lYk4DqJImQ3zZv
kUq3jIGEOgH3OCdFnq8Vo4Wu/RLPjhAwa+fffK2lGDlwXjv7WpGA47EsvCcT
ixG3b4Z/swIBGs8lU5m1ipHnSuAeOnkCdvdINk6EFyH3h6HFIYcIsHzIYt16
sBBVGPkbk8QJ2FrcY9xfmY/2yHwbcuAlYGxYbmrQPh85VYw4tPEQwGFIMpzd
m49Wxg/kyGIf3c1w8oDTK9Q6o6C3xU3AtwLQWRTOQ0yaReR8TgJW5x3Z90W+
RAG6+3osOQhIu6xql6j2Eq2I9QcO7MHxWn4mJDWTjeInjk2aY7+rs31odTIb
vczlL7FiJ6DGN+PK35uZSGjyheNdNgIkjOT1ux3T0RfpqEU6FgJeN7o/bORK
R+f8D1+MZyZAT+V0BfqQhkQoIs6K2LTpqNx6oTR0OeF55I2/CBhVdRDbNZCC
VjiN0n/uIIBBWybmUHAKYj7PoPsce+hphMp55RREG7KJ0cBWK+ToL3icjN45
T+2PZSIgzmRbEsQnofccc58NthPA3eK29nEtEXEXlqfQYQ/tNTt1xTgRdQ2O
sZYyEmCTf5enkCUBbe4+1yWM/Vt34VCuzzNEP3ljdc82AuLbpti9vj9FKsck
eroZ8HnyDt0wOfoUXRE0NIrFbrGRaeP7GYfWuXco8mIrCvh/Jdk/Rg8e6/tQ
6HE++k7ZqzbFoJDFCGtWbDov/UIvsRh0cOBu53c6AljnUivZpqKQUsJLS19s
QftmflvdKPTdLv7eeWxRln8Cy15GIrXMOHFJ7L5HT09M9ISjCB5O2W9kApLT
z/8qiA1DPxbNgkqwO//q0vA1CUXBXpzOUdgSsvYCql+CEFP+kxl9bGlLji3h
Z48QczaPtwx2RH3GH44LD9E++twkNmwv94ObTAP+qOaUV9BXEgGnTUwpzIl+
iFUvyqgG+3LMrOJeywdIuudMbjb2D1VnXyF+X2SlnxIZjR1H6Qi9XnMffXJz
pffGNkyNPZuo6YXaHcrpHbHNrfhie997orGnFlH/YNt+P5GyV9sdcXca5Oli
Kyp8r7RodkVkxQDjY9g+R3Mlc/Rc0OTJhSAZ7Lbo60qb7U5ofjDgtBC2oHOR
Xk7yNSQoq5rAhf2WW/WubcYVlPBhp8dubPm2huADObYoLHR6eCf2NxuZXW0X
zZFpTe/XbdhsBwY3La6cQ5FbHy7SYe80kF9orVdDnGrVN0jYG7yfBzMlhYG3
7S3zf15lGxmsWNMBbpM3SuT/zht6Jl33lgkMDeX/oMd+ykIna6lgDQFNbxSY
sAWcWY4nHLID9+YqRtb/7mOe0ZeQuAoWq5/t9mKLsab9IyV6E1iqGA35sA9n
nEiuYbsFQWPnWsWwXX5JGzuF34aRqLpPCtgpOz6RRZnvgJj6JTtN7KN512yH
gzzgZA0EnsN2/q1wKHP7PVjStlOw/S9+OkYHbgV4Q4Dl8M3b2IuBS+5pvj7Q
P96o/AjbqFJvx8M/D2A4jtmlGJtBxXTaR90frms+Hm3D5kNReT5eAbD7SufI
OPb65qGTMb8fQupybQg/zhfvJ6f6Mo8GgW16toI6dsMPUnmtRzDYWWU6WmL/
bac2wUoLheOnzfzTsPX+FZnRUAoHN3+dy03Y5gOOhV5uEcDY/aFvHptpIcvr
0XokaHquX6LgfJ9QCdY084iBG9IS8qvYP5aWzbNFH0PEpdUOSVxPrFPRhn+6
H8Nyh5rWJWwhde3aOpk4kGw5kP8Ze5K1gDFz9CmEXPwe34frM+680jX56Gfg
d2/vMjeu75Y/hr7N8BzCbZCgDbYvr2MqW3w8aNoFMi9ju4k3791tmAQkMie7
NO4fHM2/9af/JEGBBpOiD/bCnBPDx1cvwIW593AvdoEBz1S/fzKUN5rX+ON+
lPdjLJ6RmgJXtcel1nG/kp/2igh8ng7WSeRkddwfj4pO+PcspsPZ1KyEAmy6
Vh5fcd0MeK183lOQFc+r1Atbk2sZMD0R3s+yC8+j0js8teezwOK94bHfuN9y
D9hR5tlzoHzNelp2LwG5r11Lyq/mwJGNG7I12NnO6nNhdTlQx2NvdW4fASXO
+9nP3coF6D7j6bGfALNuF/ETXXmQvK2giODC8Xu+JbARUwBJe7aX/cVPQJW+
jpP7eAH4f+A7kI9tmhQ57c3zGtjUQdVQgAAeey9u9puvYdtgSfCLAwQ42V7q
dOJ4AwnRnk/OCBPQJH+6jdO6EHbOCs9u4fmVUtz4OD2oEHjTL5a+kyDAnm4h
QrGoEO4WRKrdk8T7wriR9hXGIhDZ1PEiSeN8Lp/8vPNVEezXWennlcX1QSIZ
m/8uhoXtes/z8Hzd3xDDCCIlkO6yYRmoREB+l1+omEEJOJoWTNoo4/hbxKqw
pJXAe2Gkz3cU9893/mJ8em9B+MwJ5zw1Ajy+MOLZUwqex/8q5cPzvlQ8U6NH
qwK4V7WUrPH+EGtVvMF5qwImyi+LheD9gpdHbc4uuQK8SIU6Zab4vNEs8Zyb
FSDqXMTNdYEAleI9F4ffVoKAlrLAiiXub8zis2xSVeDjdztmvwPOPycIjWKt
geoL9tYs97ELD/hpiNZA4/2Rwz4+eJ/qSVNZVasBu9Rf51d8cfw27WjXr9eA
kLxN9Lg/Pl/4HXjSVoPrW45+LJiA4o6NxZ6QWhirGUOGT/D9afPd/Ju1HpoZ
eFJ/vcH5Zy6ivy5SD5uu/UGvi/B+MhmqNahWD3HDzJ0OJQTEiLM9KrleD8ND
2vdGyghQkPTqSWmvh2neQJdlhPsBn1Lw7fD3wCq09jXwIwGBj5dDuTgaITmC
uO83h++zzK1xm2wzOIQOtXHIUyHXIcEpUrsZljSsp7QUqVDCqy4mYNUMu8Ii
zrsqUaF3Iq7xTHgzmG7WCgwdo4LrIN3c5GwzSLPPJnw8ToVLBtWq7LktQNnW
+ofXlAp/mjo/a0q2QYvMecYAvM9z/DKetTjWARw/7E5nf6LC0GutyDMmHXCa
mila0EOFyQIdj5POHRBtVrhVht8nlt778upmdYB/QHVe73cqiCr8Jtp2dMLo
mVwB+WkqVJ+p9y126wRNd7PL9+mHITNlQJ9q+Am+HF7VslMeBo/2c29LOLrB
W870UlruMOh8mZzm9u6Dlkv0PTsyRyBZW4rs/+crEOyurJ4to3Dw3uHfTbTv
wMoyunIAxqFd7tflpikCWCrS86o6JyAwZudn5T0jkNPoYxdcMwWKzqriqQfH
YPbuKNe55hm4fCFNNlF9Au73Up6Xbc0BnYOcdV3EFExfTdaaOLsAbC87Rn7W
zwBjo1sY48tF4JxKnXeVm4dQzdij2WrLYKy+L0D7zAJc+flU7uf0TzC5yerq
d2sRCvWujy89WYV9tbboTeESDNEERXke0cD+0D1kQiyDLf2W5dnb6yCdFRav
t3MFikeC1kedN0BKztOswWAVFFzLlWbKtkDFgrzdwHcNnrYPmEd5kih8FqNb
mYFrcFNRoujVfRLlgnjl3j8ha9AV58nZ6k+i/CkjJxfErcFeHjaWHREkynK9
kAh73hp4a/kmRqWRKC3X7EYG+tagYSenaW8biaKcpYweSdFA2f7QzoMCZApJ
UMhtVI4G37wlOe1EyJRbHaRTFCUaVGqFyKdLkCn6ymY6NA0aNCrZRosokilV
QS2JDqY06E8f/aFwikwp/u2adO4BDW4IrYoE3iZTKj448RY8pMGDjOHtvR5k
im7vtTLmMBqs9o2uCt8nU7o9pDWbntCAd2HfxocgMuWslkIa5RUNWnpyUrlf
kCmFRxJILwppoJRWNeucTqZsDEZ4bJbSQCsCabW8JFNi5YiqijoaWIV5cXoX
kylZI/xBXE00mGKSjftaTqbwXnhz072dBjtcqwWOIDKlXybQ+XMXDa7uEC6L
eU+m/N/3EPj/7yH/A/R0iIo=
"]]},
Annotation[#, "Charting`Private`Tag$22367#1"]& ]}},
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"ScalingFunctions" -> None},
PlotRange->{{-2., 2.}, {0., 2.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.759017320219024*^9, 3.759017378377531*^9}, {
3.7590183132157164`*^9, 3.7590183618394337`*^9}, 3.759018465785942*^9, {
3.759018521325508*^9, 3.759018590386771*^9}, 3.7590246301067085`*^9,
3.7590246835635633`*^9, 3.759024718861001*^9, {3.7590249253277864`*^9,
3.7590249340290527`*^9}, {3.7590249670971704`*^9, 3.759024989623293*^9}, {
3.759087515927435*^9, 3.7590875181682158`*^9}, 3.759087551350547*^9, {
3.7590882391341476`*^9, 3.759088287491565*^9}, {3.759088333802856*^9,
3.7590883562917967`*^9}, {3.7590885414150786`*^9, 3.759088601049502*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"efb6088f-833b-4199-8279-5f324369bef5"]
}, Open ]]
}, Open ]]
},
WindowSize->{958, 988},
WindowMargins->{{Automatic, -7}, {Automatic, 0}},
CellContext->Notebook,
FrontEndVersion->"11.3 for Microsoft Windows (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 160, 3, 67, "Section",ExpressionUUID->"18daee4e-4a64-48cb-a553-906d7c864554"],
Cell[CellGroupData[{
Cell[765, 29, 2063, 57, 359, "Input",ExpressionUUID->"a9ffcef9-d1d4-4139-b3be-3880a51512f3"],
Cell[2831, 88, 868, 22, 73, "Output",ExpressionUUID->"3ce9cc8b-583c-4934-a04d-f06883dfd6af"]
}, Open ]],
Cell[CellGroupData[{
Cell[3736, 115, 1343, 30, 76, "Input",ExpressionUUID->"f99ea793-a79c-47cc-a904-01d8eda21454"],
Cell[5082, 147, 13045, 225, 205, "Output",ExpressionUUID->"efb6088f-833b-4199-8279-5f324369bef5"]
}, Open ]]
}, Open ]]
}
]
*)