Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error when running rsc.pp.highly_variable_genes #178

Open
SNOL2 opened this issue Apr 25, 2024 · 7 comments
Open

Error when running rsc.pp.highly_variable_genes #178

SNOL2 opened this issue Apr 25, 2024 · 7 comments
Labels
bug Something isn't working

Comments

@SNOL2
Copy link

SNOL2 commented Apr 25, 2024

Hi, rapids_singlecell raised an error when running rsc.pp.highly_variable_genes. Could you please take a look at it?Below are the error information. Thanks in advance!

Traceback (most recent call last):
File "", line 1, in
File "/lustre2/zeminz_pkuhpc/lingxinnan/00.setting/source_scripts/scVis_ToolKit.py", line 450, in rsc_harmony_pipel
ine
rsc.pp.highly_variable_genes(adata, n_top_genes=HVGs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_hvg.py", line 159, in highly_variable_genes
_check_gpu_X(X)
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_utils.py", line 92, in _check_gpu_X
if X.has_canonical_format or not require_cf:
^^^^^^^^^^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupyx/scipy/s
parse/_compressed.py", line 676, in __get_has_canonical_format
self._has_canonical_format = bool(is_canonical.all())
^^^^^^^^^^^^^^^^^^
File "cupy/_core/core.pyx", line 1169, in cupy._core.core._ndarray_base.all
File "cupy/_core/core.pyx", line 1171, in cupy._core.core._ndarray_base.all
File "cupy/_core/_routines_logic.pyx", line 8, in cupy._core._routines_logic._ndarray_all
File "cupy/_core/_reduction.pyx", line 618, in cupy._core._reduction._SimpleReductionKernel.call
File "cupy/_core/_reduction.pyx", line 370, in cupy._core._reduction._AbstractReductionKernel._call
File "cupy/_core/_cub_reduction.pyx", line 689, in cupy._core._cub_reduction._try_to_call_cub_reduction
File "cupy/_core/_cub_reduction.pyx", line 526, in cupy._core._cub_reduction._launch_cub
File "cupy/_core/_cub_reduction.pyx", line 461, in cupy._core._cub_reduction._cub_two_pass_launch
File "cupy/_core/_cub_reduction.pyx", line 240, in cupy._core._cub_reduction._SimpleCubReductionKernel_get_cached_f
unction
File "cupy/_core/_cub_reduction.pyx", line 223, in cupy._core._cub_reduction._create_cub_reduction_function
File "cupy/_core/core.pyx", line 2254, in cupy._core.core.compile_with_cache
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 484, in _compile_module_with_cache
return _compile_with_cache_cuda(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 562, in _compile_with_cache_cuda
ptx, mapping = compile_using_nvrtc(
^^^^^^^^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 319, in compile_using_nvrtc
return _compile(source, options, cu_path,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 290, in _compile
options, headers, include_names = _jitify_prep(
^^^^^^^^^^^^^
File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 233, in _jitify_prep
jitify._init_module()
File "cupy/cuda/jitify.pyx", line 220, in cupy.cuda.jitify._init_module
File "cupy/cuda/jitify.pyx", line 244, in cupy.cuda.jitify._init_module
File "cupy/cuda/jitify.pyx", line 217, in cupy.cuda.jitify._init_cupy_headers
File "cupy/cuda/jitify.pyx", line 200, in cupy.cuda.jitify._init_cupy_headers_from_scratch
File "cupy/cuda/jitify.pyx", line 275, in cupy.cuda.jitify.jitify
RuntimeError: Runtime compilation failed

@SNOL2 SNOL2 added the bug Something isn't working label Apr 25, 2024
@Intron7
Copy link
Member

Intron7 commented Apr 25, 2024

I never seen this error. I also don't think that this is a bug within rapids-singlecell. It looks more like a cupy bug.

    elif issparse(X):
        if not require_cf:
            return True
        if X.has_canonical_format:
            return True

This is a quick fix for the affected lines. Just copy this in

@SNOL2
Copy link
Author

SNOL2 commented Apr 25, 2024

I modified the code according to your suggestion, replacing

    elif issparse(X):
         if X.has_canonical_format or not require_cf:
              return True
         else:
              X.sort_indices()
             X.sum_duplicates(

with

    elif issparse(X):
         if not require_cf:
             return True
         if X.has_canonical_format:
            return True

However, it raised another error:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/lustre2/zeminz_pkuhpc/lingxinnan/00.setting/source_scripts/scVis_ToolKit.py", line 450, in rsc_harmony_pipel
ine
    rsc.pp.highly_variable_genes(adata, n_top_genes=HVGs) 
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_hvg.py", line 159, in highly_variable_genes
    _check_gpu_X(X)
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_utils.py", line 92, in _check_gpu_X
    if not require_cf:
       ^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupyx/scipy/s
parse/_compressed.py", line 676, in __get_has_canonical_format
    self._has_canonical_format = bool(is_canonical.all())
                                      ^^^^^^^^^^^^^^^^^^
  File "cupy/_core/core.pyx", line 1169, in cupy._core.core._ndarray_base.all
  File "cupy/_core/core.pyx", line 1171, in cupy._core.core._ndarray_base.all
  File "cupy/_core/_routines_logic.pyx", line 8, in cupy._core._routines_logic._ndarray_all
  File "cupy/_core/_reduction.pyx", line 618, in cupy._core._reduction._SimpleReductionKernel.__call__
  File "cupy/_core/_reduction.pyx", line 370, in cupy._core._reduction._AbstractReductionKernel._call
  File "cupy/_core/_cub_reduction.pyx", line 689, in cupy._core._cub_reduction._try_to_call_cub_reduction
  File "cupy/_core/_cub_reduction.pyx", line 526, in cupy._core._cub_reduction._launch_cub                   [1/1946]
  File "cupy/_core/_cub_reduction.pyx", line 461, in cupy._core._cub_reduction._cub_two_pass_launch
  File "cupy/_util.pyx", line 64, in cupy._util.memoize.decorator.ret
  File "cupy/_core/_cub_reduction.pyx", line 240, in cupy._core._cub_reduction._SimpleCubReductionKernel_get_cached_$unction
  File "cupy/_core/_cub_reduction.pyx", line 223, in cupy._core._cub_reduction._create_cub_reduction_function
  File "cupy/_core/core.pyx", line 2254, in cupy._core.core.compile_with_cache
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/co$piler.py", line 484, in _compile_module_with_cache
    return _compile_with_cache_cuda(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/co$piler.py", line 562, in _compile_with_cache_cuda
    ptx, mapping = compile_using_nvrtc(
                   ^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/co$piler.py", line 319, in compile_using_nvrtc
    return _compile(source, options, cu_path,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 290, in _compile
    options, headers, include_names = _jitify_prep(
                                      ^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 233, in _jitify_prep
    jitify._init_module()
  File "cupy/cuda/jitify.pyx", line 220, in cupy.cuda.jitify._init_module
  File "cupy/cuda/jitify.pyx", line 244, in cupy.cuda.jitify._init_module
  File "cupy/cuda/jitify.pyx", line 217, in cupy.cuda.jitify._init_cupy_headers
  File "cupy/cuda/jitify.pyx", line 200, in cupy.cuda.jitify._init_cupy_headers_from_scratch
  File "cupy/cuda/jitify.pyx", line 275, in cupy.cuda.jitify.jitify
RuntimeError: Runtime compilation failed

By the way, the cupy version is 13.1.0 and the rapids version is 24.04.00

@Intron7
Copy link
Member

Intron7 commented Apr 25, 2024

I have never seen this. I can also not reproduce it at the moment I might be able to look into it on Monday. I would also like to know what I the rsc version you are using and what is the type of your matrix? It would also be helpful if you used the template and gave a reproducible code snippet.

@SNOL2
Copy link
Author

SNOL2 commented Apr 25, 2024

The rsc version is 0.10.2
I used the pbmc3k dataset from sc.datasets.pbmc3k_processed().

>>> adata
AnnData object with n_obs × n_vars = 2638 × 13714
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain'
    var: 'n_cells'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_draw_graph_fr', 'X_pca', 'X_tsne', 'X_umap'
    obsp: 'connectivities', 'distances'
>>> adata.X
<2638x13714 sparse matrix of type '<class 'numpy.float32'>'
        with 2238732 stored elements in Compressed Sparse Row format>

It raised error earlier running rsc.pp.filter_genes(adata, min_count=5)

>>> import cupy as cp
>>> import rapids_singlecell as rsc
>>> 
>>> import rmm
>>> from rmm.allocators.cupy import rmm_cupy_allocator
>>> rmm.reinitialize(
...     managed_memory=True,
...     pool_allocator=False,
... )
>>> cp.cuda.set_allocator(rmm_cupy_allocator)
>>> if input_format=='CPU':
...     rsc.get.anndata_to_GPU(adata)
... elif input_format=='GPU':
...     pass
>>> rsc.pp.filter_genes(adata, min_count=5)
Running `calculate_qc_metrics` for 'n_cells_by_counts','total_counts','mean_counts' or 'pct_dropout_by_counts'
/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py
:233: PerformanceWarning: Jitify is performing a one-time only warm-up to populate the persistent cache, this may tak
e a few seconds and will be improved in a future release...
  jitify._init_module()
rsc.pp.highly_variable_genes(adata, n_top_genes=HVGs)^[[D^H^H^H^H1000Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_simple.py", line 311, in filter_genes
    calculate_qc_metrics(adata=adata, log1p=False)
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_simple.py", line 73, in calculate_qc_metrics
    _check_gpu_X(X)
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_single
cell/preprocessing/_utils.py", line 92, in _check_gpu_X
    if not require_cf:
       ^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupyx/scipy/s
parse/_compressed.py", line 676, in __get_has_canonical_format
    self._has_canonical_format = bool(is_canonical.all())
                                      ^^^^^^^^^^^^^^^^^^
  File "cupy/_core/core.pyx", line 1169, in cupy._core.core._ndarray_base.all
  File "cupy/_core/core.pyx", line 1171, in cupy._core.core._ndarray_base.all
  File "cupy/_core/_routines_logic.pyx", line 8, in cupy._core._routines_logic._ndarray_all
  File "cupy/_core/_reduction.pyx", line 618, in cupy._core._reduction._SimpleReductionKernel.__call__
  File "cupy/_core/_reduction.pyx", line 370, in cupy._core._reduction._AbstractReductionKernel._call
  File "cupy/_core/_cub_reduction.pyx", line 689, in cupy._core._cub_reduction._try_to_call_cub_reduction
  File "cupy/_core/_cub_reduction.pyx", line 526, in cupy._core._cub_reduction._launch_cub
  File "cupy/_core/_cub_reduction.pyx", line 461, in cupy._core._cub_reduction._cub_two_pass_launch
  File "cupy/_util.pyx", line 64, in cupy._util.memoize.decorator.ret
  File "cupy/_core/_cub_reduction.pyx", line 240, in cupy._core._cub_reduction._SimpleCubReductionKernel_ge[122/1961]
unction
  File "cupy/_core/_cub_reduction.pyx", line 223, in cupy._core._cub_reduction._create_cub_reduction_function
  File "cupy/_core/core.pyx", line 2254, in cupy._core.core.compile_with_cache
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 484, in _compile_module_with_cache
    return _compile_with_cache_cuda(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 562, in _compile_with_cache_cuda
    ptx, mapping = compile_using_nvrtc(
                   ^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 319, in compile_using_nvrtc
    return _compile(source, options, cu_path,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 290, in _compile
    options, headers, include_names = _jitify_prep(
                                      ^^^^^^^^^^^^^
  File "/lustre1/zeminz_pkuhpc/lingxinnan/anaconda3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/com
piler.py", line 233, in _jitify_prep
    jitify._init_module()
  File "cupy/cuda/jitify.pyx", line 220, in cupy.cuda.jitify._init_module
  File "cupy/cuda/jitify.pyx", line 244, in cupy.cuda.jitify._init_module
  File "cupy/cuda/jitify.pyx", line 217, in cupy.cuda.jitify._init_cupy_headers
  File "cupy/cuda/jitify.pyx", line 200, in cupy.cuda.jitify._init_cupy_headers_from_scratch
  File "cupy/cuda/jitify.pyx", line 275, in cupy.cuda.jitify.jitify
RuntimeError: Runtime compilation failed

@Intron7
Copy link
Member

Intron7 commented Apr 29, 2024

I can't reproduce the error. I looks like an error with cupy to me. I think you have an issue there.

@emdann
Copy link
Member

emdann commented Jul 5, 2024

I get a very similar error running rsc.pp.neighbors.

I just installed rapids-singlecell in a fresh conda environment, following the installation instructions. Then I ran (in jupyter environment):

adata = anndata.read_h5ad(f"/path/to/adata.h5ad")
rsc.get.anndata_to_GPU(adata)
rsc.pp.neighbors(adata, n_neighbors=30, use_rep='X_scVI')

which throws

[/oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:233](https://vscode-remote+ondemand-002esherlock-002estanford-002eedu.vscode-resource.vscode-cdn.net/oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:233): PerformanceWarning: Jitify is performing a one-time only warm-up to populate the persistent cache, this may take a few seconds and will be improved in a future release...
  jitify._init_module()
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[13], line 1
----> 1 rsc.pp.neighbors(adata, n_neighbors=30, use_rep='X_scVI')
      2 rsc.tl.umap(adata)

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/rapids_singlecell/preprocessing/_neighbors.py:328, in neighbors(adata, n_neighbors, n_pcs, use_rep, random_state, algorithm, metric, metric_kwds, key_added, copy)
    317 X_conn = cp.empty((n_obs, 1), dtype=np.float32)
    318 connectivities = fuzzy_simplicial_set(
    319     X_conn,
    320     n_neighbors,
   (...)
    326     local_connectivity=local_connectivity,
    327 )
--> 328 connectivities = connectivities.tocsr().get()
    329 distances = distances.get()
    330 if key_added is None:

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupyx/scipy/sparse/_coo.py:534, in coo_matrix.tocsr(self, copy)
    531 # copy is silently ignored (in line with SciPy) because both
    532 # sum_duplicates and coosort change the underlying data
    533 x = self.copy()
--> 534 x.sum_duplicates()
    535 cusparse.coosort(x, 'r')
    536 x = cusparse.coo2csr(x)

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupyx/scipy/sparse/_coo.py:405, in coo_matrix.sum_duplicates(self)
    402 src_col = self.col[order]
    403 diff = self._sum_duplicates_diff(src_row, src_col, size=self.row.size)
--> 405 if diff[1:].all():
    406     # All elements have different indices.
    407     data = src_data
    408     row = src_row

File cupy/_core/core.pyx:1173, in cupy._core.core._ndarray_base.all()

File cupy/_core/core.pyx:1175, in cupy._core.core._ndarray_base.all()

File cupy/_core/_routines_logic.pyx:8, in cupy._core._routines_logic._ndarray_all()

File cupy/_core/_reduction.pyx:618, in cupy._core._reduction._SimpleReductionKernel.__call__()

File cupy/_core/_reduction.pyx:370, in cupy._core._reduction._AbstractReductionKernel._call()

File cupy/_core/_cub_reduction.pyx:689, in cupy._core._cub_reduction._try_to_call_cub_reduction()

File cupy/_core/_cub_reduction.pyx:526, in cupy._core._cub_reduction._launch_cub()

File cupy/_core/_cub_reduction.pyx:461, in cupy._core._cub_reduction._cub_two_pass_launch()

File cupy/_util.pyx:64, in cupy._util.memoize.decorator.ret()

File cupy/_core/_cub_reduction.pyx:240, in cupy._core._cub_reduction._SimpleCubReductionKernel_get_cached_function()

File cupy/_core/_cub_reduction.pyx:223, in cupy._core._cub_reduction._create_cub_reduction_function()

File cupy/_core/core.pyx:2258, in cupy._core.core.compile_with_cache()

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:484, in _compile_module_with_cache(source, options, arch, cache_dir, extra_source, backend, enable_cooperative_groups, name_expressions, log_stream, jitify)
    480     return _compile_with_cache_hip(
    481         source, options, arch, cache_dir, extra_source, backend,
    482         name_expressions, log_stream, cache_in_memory)
    483 else:
--> 484     return _compile_with_cache_cuda(
    485         source, options, arch, cache_dir, extra_source, backend,
    486         enable_cooperative_groups, name_expressions, log_stream,
    487         cache_in_memory, jitify)

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:562, in _compile_with_cache_cuda(source, options, arch, cache_dir, extra_source, backend, enable_cooperative_groups, name_expressions, log_stream, cache_in_memory, jitify)
    560 if backend == 'nvrtc':
    561     cu_name = '' if cache_in_memory else name + '.cu'
--> 562     ptx, mapping = compile_using_nvrtc(
    563         source, options, arch, cu_name, name_expressions,
    564         log_stream, cache_in_memory, jitify)
    565     if _is_cudadevrt_needed(options):
    566         # for separate compilation
    567         ls = function.LinkState()

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:319, in compile_using_nvrtc(source, options, arch, filename, name_expressions, log_stream, cache_in_memory, jitify)
    316         with open(cu_path, 'w') as cu_file:
    317             cu_file.write(source)
--> 319         return _compile(source, options, cu_path,
    320                         name_expressions, log_stream, jitify)
    321 else:
    322     cu_path = '' if not jitify else filename

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:290, in compile_using_nvrtc.<locals>._compile(source, options, cu_path, name_expressions, log_stream, jitify)
    287     method = 'ptx'
    289 if jitify:
--> 290     options, headers, include_names = _jitify_prep(
    291         source, options, cu_path)
    292 else:
    293     headers = include_names = ()

File /oak/stanford/groups/pritch/users/emma/miniforge3/envs/rapids_singlecell/lib/python3.11/site-packages/cupy/cuda/compiler.py:233, in _jitify_prep(source, options, cu_path)
    231 if not _jitify_header_source_map_populated:
    232     from cupy._core import core
--> 233     jitify._init_module()
    234     jitify._add_sources(core._get_header_source_map())
    235     _jitify_header_source_map_populated = True

File cupy/cuda/jitify.pyx:220, in cupy.cuda.jitify._init_module()

File cupy/cuda/jitify.pyx:244, in cupy.cuda.jitify._init_module()

File cupy/cuda/jitify.pyx:217, in cupy.cuda.jitify._init_cupy_headers()

File cupy/cuda/jitify.pyx:200, in cupy.cuda.jitify._init_cupy_headers_from_scratch()

File cupy/cuda/jitify.pyx:275, in cupy.cuda.jitify.jitify()

RuntimeError: Runtime compilation failed

Environment info from scanpy.logging

-----
anndata     0.10.8
scanpy      1.10.2
-----
PIL                         10.3.0
anyio                       NA
arrow                       1.3.0
asttokens                   NA
attr                        23.2.0
attrs                       23.2.0
babel                       2.14.0
brotli                      1.1.0
cachetools                  5.3.3
certifi                     2024.06.02
cffi                        1.16.0
charset_normalizer          3.3.2
cloudpickle                 3.0.0
colorama                    0.4.6
comm                        0.2.2
cuda                        11.8.3
cudf                        24.06.01
cuml                        24.06.01
cupy                        13.2.0
cupy_backends               NA
cupyx                       NA
cycler                      0.12.1
cython_runtime              NA
cytoolz                     0.12.3
dask                        2024.5.1
dask_cudf                   24.06.01
dask_expr                   1.1.1
dateutil                    2.9.0
debugpy                     1.8.2
decorator                   5.1.1
decoupler                   1.7.0
defusedxml                  0.7.1
executing                   2.0.1
fastjsonschema              NA
fastrlock                   0.8.2
fqdn                        NA
fsspec                      2024.6.1
h5py                        3.11.0
idna                        3.7
igraph                      0.11.5
ipykernel                   6.29.5
isoduration                 NA
jedi                        0.19.1
jinja2                      3.1.4
joblib                      1.4.2
json5                       0.9.25
jsonpointer                 3.0.0
jsonschema                  4.22.0
jsonschema_specifications   NA
jupyter_events              0.10.0
jupyter_server              2.14.1
jupyterlab_server           2.27.2
kiwisolver                  1.4.5
legacy_api_wrap             NA
leidenalg                   0.10.2
llvmlite                    0.43.0
louvain                     0.8.2
lz4                         4.3.3
markupsafe                  2.1.5
matplotlib                  3.8.4
mpl_toolkits                NA
natsort                     8.4.0
nbformat                    5.10.4
numba                       0.60.0
numpy                       1.26.4
nvtx                        NA
overrides                   NA
packaging                   24.1
pandas                      2.2.2
parso                       0.8.4
patsy                       0.5.6
pickleshare                 0.7.5
pkg_resources               NA
platformdirs                4.2.2
prometheus_client           NA
prompt_toolkit              3.0.47
psutil                      6.0.0
ptxcompiler                 0.8.1
pure_eval                   0.2.2
pyarrow                     16.1.0
pycparser                   2.22
pydev_ipython               NA
pydevconsole                NA
pydevd                      2.9.5
pydevd_file_utils           NA
pydevd_plugins              NA
pydevd_tracing              NA
pygments                    2.18.0
pylibraft                   24.06.00
pyparsing                   3.1.2
pythonjsonlogger            NA
pytz                        2024.1
rapids_dask_dependency      NA
rapids_singlecell           0.10.6
referencing                 NA
requests                    2.32.3
rfc3339_validator           0.1.4
rfc3986_validator           0.1.1
rmm                         24.06.00
rpds                        NA
scipy                       1.14.0
send2trash                  NA
session_info                1.0.0
six                         1.16.0
sklearn                     1.5.1
sniffio                     1.3.1
socks                       1.7.1
stack_data                  0.6.2
statsmodels                 0.14.2
tblib                       3.0.0
texttable                   1.7.0
threadpoolctl               3.5.0
tlz                         0.12.3
toolz                       0.12.1
tornado                     6.4.1
tqdm                        4.66.4
traitlets                   5.14.3
treelite                    4.1.2
typing_extensions           NA
uri_template                NA
urllib3                     1.26.19
wcwidth                     0.2.13
webcolors                   24.6.0
websocket                   1.8.0
yaml                        6.0.1
zipp                        NA
zmq                         26.0.3
-----
IPython             8.26.0
jupyter_client      8.6.2
jupyter_core        5.7.2
jupyterlab          4.2.3
-----
Python 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0]
Linux-3.10.0-1160.118.1.el7.x86_64-x86_64-with-glibc2.17
-----
Session information updated at 2024-07-05 12:12

It does look like an issue with cupy, but I don't know it well enough to debug effectively, tips would be appreciated.

@Intron7
Copy link
Member

Intron7 commented Jul 7, 2024

@emdann

can you try this as a minimal reproducer and if this crashed please report to cupy otherwise I'll think about it some more.

import cupyx as cpx

random_coo = cpx.scipy.sparse.random(5000,5000, density=0.1)
random_coo.tocsr().get()

Please feel free to tag me or link this issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

3 participants