Skip to content

Latest commit

 

History

History
48 lines (31 loc) · 2.06 KB

README.md

File metadata and controls

48 lines (31 loc) · 2.06 KB

nyush-durf-2024-pl

Axiomatic Foundations of Convex Analysis in Proof Assistants

The purpose of the DURF project will be to formalize in the proof assistant Coq a number of fundamental properties satisfied by barycentric spaces. A barycentric space is a generalisation of the notion of real vector space, defined axiomatically as sets equipped with a barycentric notion of addition. We will formally establish a result by Ehrhard-Mellies-Theorem which provides sufficient and necessary conditions for a barycentric space to be faithfully embedded in a real vector space.

We can see how we can certify linear programming algorithms. And/or study probabilistic automata and probabilistic languages.

What needs to be done: find the existing libraries in Coq and Lean.

An interval $\mathbb{P}$ is a set with:

  1. a commutative monoid structure $(p,q \mapsto p \wedge q,1)$
  2. a commutative monoid structure $(p,q \mapsto p \vee q,0)$
  3. a duality $p \mapsto \overline p$, s.t. $\overline{\overline p} = p, \overline{p \vee q} = \overline p \wedge \overline q$

Notation: $p \Rightarrow q := \overline p \vee q$

A $\mathbb{P}$-barycentric space $(\Omega,+_p)$ is a set with $+_p: \mathbb{P} \rightarrow \Omega \rightarrow \Omega \rightarrow \Omega$.

  1. $a+p b = b+{\overline p}a$
  2. $a+_1b = a$
  3. $a+_pa=a$
  4. $a+_p(b+_qc) = (a+_rb)+_sc$ when $p = r \wedge s, s = p \vee q, q \Rightarrow p = s \Rightarrow r$

Proposition 1: $\mathbb{P}$ is a $\mathbb{P}$-barycentric space.

Observation: the cartesian product of two P-barycentric spaces is P-barycentric: $(x,y)+_p(x’,y’) = (x+_px,y+_py’)$

Proposition 2: suppose $\sim$ is an equivalence relation on $\mathbb{P}$-barycentric space $X$ s.t. $x+_px \sim x’+_py’$ when $x\sim x’$ and $y\sim y’$, $X/\sim$ is a $\mathbb{P}$-barycentric space.

Construction of the cone $X_*$ of a barycentric space $X$. $X_* = P \times X /\sim$ where $(1,x)\sim(1,x’)$; thus $X_*$ is $\mathbb{P}$-barycentric.

Proposition 3: $X \mapsto X_*$ is functorial.

Proposition 4: $1_* = P$

Proposition 5: $X_{**}$ is automorphic.