This repository has been archived by the owner on Feb 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexperiments.py
107 lines (82 loc) · 3.36 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import tensorflow as tf
import gym
from gym.wrappers import Monitor
import numpy.random as np_random
from mujoco_py import GlfwContext
#GlfwContext(offscreen=True) # Create a window to init GLFW.
from maml_rl.policies.normal_mlp import NormalMLPPolicy
from maml_rl.baselines.linear_baseline import LinearFeatureBaseline
from maml_rl.sampler import BatchSampler
from maml_rl.metalearners.maml_trpo import MetaLearner
ITR = 991
GRAD_STEPS = [0, 1]
EVAL_STEPS = 10
ENV_NAME = "HalfCheetahDir-v1"
ENV_PREFIX = "halfcheetah-dir"
META_POLICY_PATH = f"saves/maml-{ENV_PREFIX}/policy-{ITR}"
BASELINE_PATH = f"saves/maml-{ENV_PREFIX}/baseline-{ITR}"
directions = 2 * np_random.binomial(1, p=0.5, size=(1,)) - 1
TEST_TASKS = [{'direction': direction} for direction in directions]
GOALS = np.array([[0.3, 0.2]])
#TEST_TASKS = [{'goal': goal} for goal in GOALS]
def load_meta_learner_params(policy_path, baseline_path, env):
with tf.name_scope('policy') as scope:
policy = NormalMLPPolicy(
int(np.prod(env.observation_space.shape)),
int(np.prod(env.action_space.shape)),
hidden_sizes=(100, 100),
name=scope
)
policy.load_weights(policy_path)
baseline = LinearFeatureBaseline(int(np.prod(env.observation_space.shape)))
baseline.load_weights(baseline_path)
return policy, baseline
def evaluate(env, task, policy):
cum_reward = 0
t = 0
env.reset_task(task)
obs = env.reset()
while True:
env.render(mode='rgb_array')
with tf.device('cpu:0'):
obs_tensor = tf.convert_to_tensor(obs[np.newaxis], dtype=tf.float32)
action_tensor = policy(obs_tensor, params=None).sample()
with tf.device('cpu:0'):
action = action_tensor.numpy()
obs, rew, done, _ = env.step(action[0])
cum_reward += rew
t += 1
if done:
break
return cum_reward
def main():
env = gym.make(ENV_NAME)
env = Monitor(env, f"./videos/{ENV_PREFIX}", force=True)
policy, baseline = load_meta_learner_params(META_POLICY_PATH, BASELINE_PATH, env)
sampler = BatchSampler(env_name=ENV_NAME, batch_size=20, num_workers=2)
learner = MetaLearner(sampler, policy, baseline, optimizer=None)
for task in TEST_TASKS:
returns = []
for i in range(1, EVAL_STEPS+1):
for grad_steps in GRAD_STEPS:
if i % 10 == 0:
print(f"Evaluation-step: {i}")
env.reset_task(task)
learner.policy, learner.baseline = load_meta_learner_params(META_POLICY_PATH,
BASELINE_PATH,
env)
# Sample a batch of transitions
sampler.reset_task(task)
episodes = sampler.sample(learner.policy)
for _ in range(grad_steps):
new_params = learner.adapt(episodes)
learner.policy.set_params_with_name(new_params)
returns.append(evaluate(env, task, learner.policy))
print("========EVAL RESULTS=======")
print(f"Task: {task}")
print(f"Returns: {returns}")
print(f"Average Return: {np.mean(returns)}")
print("===========================")
if __name__ == '__main__':
main()