Skip to content

Latest commit

 

History

History
94 lines (61 loc) · 2.1 KB

README.md

File metadata and controls

94 lines (61 loc) · 2.1 KB

Eyeris - AI Image Analysis Service

Eyeris is a powerful image analysis service that provides both a web interface and REST API for AI-powered image analysis using OpenAI's GPT-4 vision capabilities.

Features

  • 🖼️ Simple drag-and-drop web interface
  • 🔌 RESTful API for integration
  • 🤖 Powered by OpenAI's GPT-4o vision model
  • 📊 Detailed JSON-structured analysis output
  • 🚀 Built with Rust for high performance
  • 🌐 CORS-enabled for web applications

Getting Started

Prerequisites

  • Rust (latest stable version)
  • An OpenAI API key

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/eyeris.git
cd eyeris
  1. Set up your OpenAI API key:
export OPENAI_API_KEY='your-api-key-here'
  1. Build and run:
cargo run
  1. Access the service:
  • Web Interface: http://localhost:3000
  • API Endpoint: http://localhost:3000/api/v1
  • API Documentation: http://localhost:3000/docs

Usage

Web Interface

  1. Open the web interface in your browser
  2. Drag and drop an image or click "Choose File"
  3. Wait for the analysis to complete
  4. View the detailed JSON analysis

API

# Analyze an image
curl -X POST http://localhost:3000/api/v1/analyze \
  -F "image=@path/to/your/image.jpg"

# Health check
curl http://localhost:3000/api/v1/health

See the API Documentation for detailed endpoint information and examples.

Tech Stack

  • Backend: Rust with Axum web framework
  • Frontend: HTML, CSS, JavaScript
  • AI: OpenAI GPT-4o Vision API
  • Image Processing: Rust image crate

API Documentation

The API provides endpoints for image analysis and health checking. All responses are in JSON format.

Key Endpoints

  • POST /api/v1/analyze - Analyze an image
  • GET /api/v1/health - Check service health

For detailed API documentation, examples, and integration guides, see the API Documentation.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.