-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathG2G_differentW.py
422 lines (367 loc) · 18 KB
/
G2G_differentW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from __future__ import print_function
import GPUtil
import optimal_transport_modules.log_utils as LLU
from optimal_transport_modules.icnn_modules import *
from optimal_transport_modules.generate_data import *
from optimal_transport_modules.record_mean_cov import *
import optimal_transport_modules
from optimal_transport_modules.cfg import CfgGMM as Cfg_class
from torchvision.utils import make_grid, save_image
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.utils.data
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
args = Cfg_class()
gpus_choice = GPUtil.getFirstAvailable(
order='random', maxLoad=0.5, maxMemory=0.5, attempts=5, interval=900, verbose=False)
PTU.set_gpu_mode(True, gpus_choice[0])
args.MEAN, args.COV = select_mean_and_cov(args.TRIAL)
args.INPUT_DIM = args.MEAN[0].shape[1]
args.NUM_DISTRIBUTION = len(args.MEAN)
for i in range(args.NUM_DISTRIBUTION):
args.NUM_GMM_COMPONENT.append(args.MEAN[i].shape[0])
if args.INPUT_DIM <= 2:
args.high_dim_flag = False
else:
args.high_dim_flag = True
"""""""""""""""""""""""""""""""""""""""""""""""""""
Storing path
"""""""""""""""""""""""""""""""""""""""""""""""""""
results_save_path, model_save_path, results, testresults = LLU.init_path(args)
kwargs = {'num_workers': 1, 'pin_memory': True}
##### For computing the constraint loss of negtive weights ######
def compute_constraint_loss(list_of_params, begin_idx, end_idx):
loss_val = 0
p_idx = 0
for p in list_of_params:
if p_idx >= begin_idx and p_idx < end_idx:
loss_val += torch.relu(-p).pow(2).sum()
elif p_idx >= end_idx:
break
p_idx += 1
return loss_val
"""""""""""""""""""""""""""""""""""""""""""""""""""
Data
"""""""""""""""""""""""""""""""""""""""""""""""""""
total_data = marginal_data_gmm_3loop_picnn(args)
train_loader = torch.utils.data.DataLoader(
total_data, batch_size=args.BATCH_SIZE, shuffle=False, **kwargs)
"""""""""""""""""""""""""""""""""""""""""""""""""""
Plot Original Distribution
"""""""""""""""""""""""""""""""""""""""""""""""""""
# if args.high_dim_flag == False:
# # if False:
# original_dist_plot_path = []
# for i in range(args.NUM_DISTRIBUTION):
# original_dist_plot_path.append(results_save_path + '/distribution{0}_GMM{1}.png'.format(
# i + 1, args.TRIAL))
# right_place = 7
# left_place = -7
# for i in range(args.NUM_DISTRIBUTION):
# fig = plt.figure()
# JG = sns.jointplot(total_data[:, :, i].detach().numpy()[:, 0],
# total_data[:, :, i].detach().numpy()[:, 1], kind='kde', joint_kws={'shade_lowest': False})
# JG.ax_joint.set_xlim(left_place, right_place)
# JG.ax_joint.set_ylim(left_place, right_place)
# plt.savefig(original_dist_plot_path[i])
# plt.close()
"""""""""""""""""""""""""""""""""""""""""""""""""""
Neural Networks
"""""""""""""""""""""""""""""""""""""""""""""""""""
if args.expanded_PICNN:
convex_f = nn.ModuleList(
[PICNN_expanded(
args.INPUT_DIM, args.NUM_DISTRIBUTION,
args.NUM_NEURON_fg_weight,
args.NUM_NEURON_fg_sample,
args.fg_activation,
args.NUM_LAYERS) for i in range(
args.NUM_DISTRIBUTION)])
convex_g = nn.ModuleList(
[PICNN_expanded(
args.INPUT_DIM, args.NUM_DISTRIBUTION,
args.NUM_NEURON_fg_weight,
args.NUM_NEURON_fg_sample,
args.fg_activation,
args.NUM_LAYERS) for i in range(
args.NUM_DISTRIBUTION)])
else:
convex_f = nn.ModuleList(
[PICNN_LastInp_Quadratic(
args.INPUT_DIM, args.NUM_DISTRIBUTION,
args.NUM_NEURON_fg_weight,
args.NUM_NEURON_fg_sample,
args.fg_activation,
args.NUM_LAYERS) for i in range(
args.NUM_DISTRIBUTION)])
convex_g = nn.ModuleList(
[PICNN_LastInp_Quadratic(
args.INPUT_DIM, args.NUM_DISTRIBUTION,
args.NUM_NEURON_fg_weight,
args.NUM_NEURON_fg_sample,
args.fg_activation,
args.NUM_LAYERS) for i in range(
args.NUM_DISTRIBUTION)])
if args.h_PICNN_flag:
generator_h = Different_Weights_PICNN(
args.INPUT_DIM, args.NUM_DISTRIBUTION, args.NUM_NEURON_h_weight, args.NUM_NEURON_h_sample, args.h_activation, args.NUM_LAYERS_h, args.h_full_activation)
else:
generator_h = Different_Weights_NormalNet(
args.INPUT_DIM, args.OUTPUT_DIM, args.NUM_DISTRIBUTION, args.NUM_NEURON_h, args.h_activation, args.NUM_LAYERS_h, h_full_activation=args.h_full_activation)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Initialization with some positive parameters
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
# Form a list of positive weight parameters in f/g_positive_params and
# also initialize them with positive values
f_positive_params = []
g_positive_params = []
for i in range(args.NUM_DISTRIBUTION):
for p in list(convex_f[i].parameters()):
if hasattr(p, 'be_positive'):
f_positive_params.append(p)
for p in list(convex_g[i].parameters()):
if hasattr(p, 'be_positive'):
g_positive_params.append(p)
convex_f[i].cuda(PTU.device)
convex_g[i].cuda(PTU.device)
generator_h.cuda(PTU.device)
len_g_params = len(g_positive_params)
num_parameters = 0.0
for i in range(args.NUM_DISTRIBUTION):
num_parameters_each_distribution = sum(
[l.nelement() for l in convex_f[i].parameters()])
num_parameters += num_parameters_each_distribution
optimizer_f = []
optimizer_g = []
for i in range(args.NUM_DISTRIBUTION):
optimizer_f.append(optim.Adam(convex_f[i].parameters(), lr=args.LR_f))
optimizer_g.append(
optim.Adam(convex_g[i].parameters(), lr=args.LR_g))
optimizer_h = optim.Adam(
generator_h.parameters(),
lr=args.LR_h)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Training function definition
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
############## For each function here, it's an epoch ##################
def train(epoch):
convex_f.train()
convex_g.train()
generator_h.train()
# These values are just for saving data
w2_loss_value_epoch = 0
g_OT_loss_value_epoch = [0] * args.NUM_DISTRIBUTION
g_constraints_loss_value_epoch = 0
remaining_f_loss_value_epoch = [0] * args.NUM_DISTRIBUTION
mu_2moment_loss_value_epoch = 0
miu_mean_value_epoch = 0
miu_var_value_epoch = 0
# Iterate over one train_loader, the batch_idx is determined by tot
for batch_idx, real_data in enumerate(train_loader):
real_data = real_data.cuda(PTU.device)
miu_i = real_data[:, :, :args.NUM_DISTRIBUTION]
epsilon = real_data[:, :, args.NUM_DISTRIBUTION]
miu_i = Variable(miu_i, requires_grad=True)
epsilon = Variable(epsilon)
# containing four distribution
g_OT_loss_value_batch = [0] * args.NUM_DISTRIBUTION
g_constraints_loss_value_batch = 0 # containing four g networks
remaining_f_loss_value_batch = [0] * args.NUM_DISTRIBUTION
mu_2moment_loss_value_batch = 0
miu_mean_value_batch = torch.zeros([args.INPUT_DIM])
miu_var_value_batch = np.zeros(
[args.INPUT_DIM, args.INPUT_DIM])
######################################################
# Medium Loop Begin #
######################################################
######### Here iterate over a given number: args.N_Fnet_ITERS=4 ##
for medium_iter in range(1, args.N_Fnet_ITERS + 1):
######################################################
# Inner Loop Begin #
######################################################
######### Here iterate over a given number: args.N_Gnet_ITERS=16 ##
for inner_iter in range(1, args.N_Gnet_ITERS + 1):
loss_g = torch.ones(args.NUM_DISTRIBUTION)
g_positive_constraints_loss = torch.zeros(
args.NUM_DISTRIBUTION)
for i in range(args.NUM_DISTRIBUTION):
optimizer_g[i].zero_grad()
# Get the gradient of g(y):=g(miu_i_data)
tmp_miu_i = miu_i[:, :, i]
g_of_y = convex_g[i](tmp_miu_i).sum()
grad_g_of_y = torch.autograd.grad(
g_of_y, tmp_miu_i, create_graph=True)[0]
# For each distribution you need to calculate a f(gradient of y)
# it's the mean of the batch
# FIXME add wegihts
f_grad_g_y = torch.dot(convex_f[i](grad_g_of_y).reshape(-1),
miu_i[:, -args.NUM_DISTRIBUTION + i, 0]) / args.BATCH_SIZE
# FIXME add wegihts
# ? The 1st loss part useful for f/g parameters
loss_g[i] = f_grad_g_y - torch.dot((grad_g_of_y[:, :args.INPUT_DIM] * miu_i[:, :args.INPUT_DIM, i]).sum(dim=1),
miu_i[:, -args.NUM_DISTRIBUTION + i, 0]) / args.BATCH_SIZE
g_OT_loss_value_batch[i] += loss_g[i].item()
total_loss_g = loss_g.sum()
total_loss_g.backward()
# ? The 2nd loss part useful for g parameters:
# FIXME add wegihts
# if args.LAMBDA_CVX > 0:
for i in range(args.NUM_DISTRIBUTION):
g_positive_constraints_loss[i] = miu_i[:, -args.NUM_DISTRIBUTION + i, 0].mean() * args.LAMBDA_CVX * compute_constraint_loss(
list_of_params=g_positive_params, begin_idx=int(len_g_params * i / args.NUM_DISTRIBUTION), end_idx=int(len_g_params * (i + 1) / args.NUM_DISTRIBUTION))
total_g_positive_constraints_loss = g_positive_constraints_loss.sum()
total_g_positive_constraints_loss.backward()
g_constraints_loss_value_batch += total_g_positive_constraints_loss.item()
# ! update g
for i in range(args.NUM_DISTRIBUTION):
optimizer_g[i].step()
# Just for the last iteration keep the gradient on f intact
if inner_iter != args.N_Gnet_ITERS:
for i in range(args.NUM_DISTRIBUTION):
optimizer_f[i].zero_grad()
######################################################
# Inner Loop Ends #
######################################################
# Generator generates the miu samples
miu = generator_h(epsilon)
# TODO change the miu[] because miu includes the weights
miu_mean = miu[:, :args.INPUT_DIM].mean(dim=0).cpu()
miu_var = np.cov(miu[:, :args.INPUT_DIM].cpu().detach().numpy().T)
miu_mean_value_batch += miu_mean
miu_var_value_batch += miu_var
remaining_f_loss = torch.ones(args.NUM_DISTRIBUTION)
# FIXME add wegihts
# ? The 3rd loss part useful for f/h parameters
for i in range(args.NUM_DISTRIBUTION):
remaining_f_loss[i] = - torch.dot(convex_f[i](miu).reshape(-1),
miu_i[:, -args.NUM_DISTRIBUTION + i, 0]) / args.BATCH_SIZE
remaining_f_loss_value_batch[i] += remaining_f_loss[i].item()
total_remaining_f_loss = remaining_f_loss.sum()
total_remaining_f_loss.backward(retain_graph=True)
# Flip the gradient sign for parameters in convex f
# Because we need to solve "sup" of the loss for f
for p in list(convex_f.parameters()):
p.grad.copy_(-p.grad)
# ! update f
for i in range(args.NUM_DISTRIBUTION):
optimizer_f[i].step()
# Clamp the positive constraints on the convex_f_params
for p in f_positive_params:
p.data.copy_(torch.relu(p.data))
if medium_iter != args.N_Fnet_ITERS:
optimizer_h.zero_grad()
######################################################
# Medium Loop Ends #
######################################################
# ? The 4th loss part useful for h parameters:
# TODO don't need to worry about * args.NUM_DISTRIBUTION, but needs to cut the output
# mu_2moment_loss_value_batch is total 4 distributions combined F
mu_2moment_loss = 0.5 * \
miu[:, :args.INPUT_DIM].pow(2).sum(dim=1).mean()
mu_2moment_loss_value_batch += mu_2moment_loss.item()
# ! update h
mu_2moment_loss.backward()
# The four parts loss gradients are accumulated
optimizer_h.step()
miu_mean_value_batch = miu_mean_value_batch / args.N_Fnet_ITERS
miu_var_value_batch = miu_var_value_batch / args.N_Fnet_ITERS
g_OT_loss_value_batch[:] = [
item / (args.N_Gnet_ITERS * args.N_Fnet_ITERS) for item in g_OT_loss_value_batch]
g_constraints_loss_value_batch /= (args.N_Gnet_ITERS *
args.N_Fnet_ITERS)
remaining_f_loss_value_batch[:] = [
item / args.N_Fnet_ITERS for item in remaining_f_loss_value_batch]
##### Calculate W2 batch loss ###############
# FIXME different weights!!
w2_loss_value_batch = sum(g_OT_loss_value_batch) + \
sum(remaining_f_loss_value_batch) + \
mu_2moment_loss_value_batch + \
0.5 * (miu_i[:, :args.INPUT_DIM, :].pow(2).sum(dim=1) *
miu_i[:, -args.NUM_DISTRIBUTION:, 0]).sum(dim=1).mean().item()
w2_loss_value_batch *= 2
##### Calculate all epoch loss ###############
w2_loss_value_epoch += w2_loss_value_batch
miu_mean_value_epoch += miu_mean_value_batch
miu_var_value_epoch += miu_var_value_batch
g_OT_loss_value_epoch = [
a + b for a,
b in zip(
g_OT_loss_value_epoch,
g_OT_loss_value_batch)]
g_constraints_loss_value_epoch += g_constraints_loss_value_batch
remaining_f_loss_value_epoch = [
a + b for a,
b in zip(
remaining_f_loss_value_epoch,
remaining_f_loss_value_batch)]
mu_2moment_loss_value_epoch += mu_2moment_loss_value_batch
if batch_idx % args.log_interval == 0:
logging.info('Train_Epoch: {} [{}/{} ({:.0f}%)] avg_dstb_g_OT_loss: {:.4f} avg_dstb_remaining_f_loss: {:.4f} mu_2moment_loss: {:.4f} g_constraint_loss: {:.4f} W2_loss: {:.4f} '.format(
epoch,
batch_idx * len(real_data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
sum(g_OT_loss_value_batch),
sum(remaining_f_loss_value_batch),
mu_2moment_loss_value_batch,
miu_mean_value_batch.mean().tolist(),
miu_var_value_batch.mean().tolist(),
g_constraints_loss_value_batch,
w2_loss_value_batch
))
w2_loss_value_epoch /= len(train_loader)
g_OT_loss_value_epoch[:] = [
item / len(train_loader) for item in g_OT_loss_value_epoch]
g_constraints_loss_value_epoch /= len(train_loader)
remaining_f_loss_value_epoch[:] = [
item / len(train_loader) for item in remaining_f_loss_value_epoch]
mu_2moment_loss_value_epoch /= len(train_loader)
miu_mean_value_epoch /= len(train_loader)
miu_var_value_epoch /= len(train_loader)
results.add(
epoch=epoch,
w2_loss_train_samples=w2_loss_value_epoch,
g_OT_train_loss=g_OT_loss_value_epoch,
g_constraints_train_loss=g_constraints_loss_value_epoch,
remaining_f_train_loss=remaining_f_loss_value_epoch,
mu_2moment_train_loss=mu_2moment_loss_value_epoch,
miu_mean_train=miu_mean_value_epoch.tolist(),
miu_var_train=miu_var_value_epoch.tolist()
)
results.save()
return w2_loss_value_epoch, g_OT_loss_value_epoch, g_constraints_loss_value_epoch, remaining_f_loss_value_epoch, mu_2moment_loss_value_epoch
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Real Training Process
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
total_w2_epoch_loss_list = []
total_g_OT_epoch_loss_list = []
total_g_constraint_epoch_loss_list = []
total_remaining_f_epoch_loss_list = []
total_mu_2moment_epoch_loss_list = []
for epoch in range(1, args.epochs + 1):
w2_loss_value_epoch, g_OT_loss_value_epoch, g_constraints_loss_value_epoch, remaining_f_loss_value_epoch, mu_2moment_loss_value_epoch = train(
epoch)
total_w2_epoch_loss_list.append(w2_loss_value_epoch)
total_g_OT_epoch_loss_list.append(g_OT_loss_value_epoch)
total_g_constraint_epoch_loss_list.append(g_constraints_loss_value_epoch)
total_remaining_f_epoch_loss_list.append(remaining_f_loss_value_epoch)
total_mu_2moment_epoch_loss_list.append(mu_2moment_loss_value_epoch)
if args.schedule_learning_rate:
if epoch % args.lr_schedule_per_epoch == 0:
for i in range(args.NUM_DISTRIBUTION):
optimizer_f[i].param_groups[0]['lr'] = optimizer_f[i].param_groups[0]['lr'] * \
args.lr_schedule_scale
optimizer_g[i].param_groups[0]['lr'] = optimizer_g[i].param_groups[0]['lr'] * \
args.lr_schedule_scale
optimizer_h.param_groups[0]['lr'] = optimizer_h.param_groups[0]['lr'] * \
args.lr_schedule_scale
if epoch % 5 == 0:
LLU.dump_nn(generator_h, convex_f, convex_g, epoch,
model_save_path, num_distribution=args.NUM_DISTRIBUTION, save_f=args.save_f)