-
Notifications
You must be signed in to change notification settings - Fork 10
/
rooftop.py
320 lines (266 loc) · 11.7 KB
/
rooftop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import print_function
# import Image
from PIL import Image
import cv2
import matplotlib.pyplot as plt
import numpy as np
import math
import glob
from shapely.geometry import Polygon
zoom = 20
tileSize = 256
initialResolution = 2 * math.pi * 6378137 / tileSize
originShift = 2 * math.pi * 6378137 / 2.0
earthc = 6378137 * 2 * math.pi
factor = math.pow(2, zoom)
map_width = 256 * (2 ** zoom)
def grays(im):
return cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
def white_image(im):
return cv2.bitwise_not(np.zeros(im.shape, np.uint8))
def pixels_per_mm(lat, length):
return length / math.cos(lat * math.pi / 180) * earthc * 1000 / map_width
def sharp(gray):
blur = cv2.bilateralFilter(gray, 5, sigmaColor=7, sigmaSpace=5)
kernel_sharp = np.array((
[-2, -2, -2],
[-2, 17, -2],
[-2, -2, -2]), dtype='int')
return cv2.filter2D(blur, -1, kernel_sharp)
def solar_panel_params():
panel_lens = input("Number of panels together: ")
# panel_wids = input("Number of panels in breadth: ")
panel_wids = 1
length_s = input("Enter length of panel in mm: ")
width = input("Enter width of panel in mm: ")
angle = input("Rotation Angle for Solar Panels: ")
return panel_lens, panel_wids, length_s, width, angle
def contours_canny(cnts):
cv2.drawContours(canny_contours, cnts, -1, 255, 1)
# Removing the contours detected inside the roof
for cnt in cnts:
counters = 0
cnt = np.array(cnt)
cnt = np.reshape(cnt, (cnt.shape[0], cnt.shape[2]))
pts = []
if cv2.contourArea(cnt) > 10:
for i in cnt:
x, y = i
if edged[y, x] == 255:
counters += 1
pts.append((x, y))
if counters > 10:
pts = np.array(pts)
pts = pts.reshape(-1, 1, 2)
cv2.polylines(canny_polygons, [pts], True, 0)
def contours_img(cnts):
cv2.drawContours(image_contours, cnts, -1, 255, 1)
# Removing the contours detected inside the roof
for cnt in cnts:
counter = 0
cnt = np.array(cnt)
cnt = np.reshape(cnt, (cnt.shape[0], cnt.shape[2]))
pts = []
if cv2.contourArea(cnt) > 5:
for i in cnt:
x, y = i
if edged[y, x] == 255:
counter += 1
pts.append((x, y))
if counter > 10:
pts = np.array(pts)
pts = pts.reshape(-1, 1, 2)
cv2.polylines(image_polygons, [pts], True, 0)
def rotation(center_x, center_y, points, ang):
angle = ang * math.pi / 180
rotated_points = []
for p in points:
x, y = p
x, y = x - center_x, y - center_y
x, y = (x * math.cos(angle) - y * math.sin(angle), x * math.sin(angle) + y * math.cos(angle))
x, y = x + center_x, y + center_y
rotated_points.append((x, y))
return rotated_points
def createLineIterator(P1, P2, img):
imageH = img.shape[0]
imageW = img.shape[1]
P1X = P1[0]
P1Y = P1[1]
P2X = P2[0]
P2Y = P2[1]
# difference and absolute difference between points
# used to calculate slope and relative location between points
dX = P2X - P1X
dY = P2Y - P1Y
dXa = np.abs(dX)
dYa = np.abs(dY)
# predefine numpy array for output based on distance between points
itbuffer = np.empty(shape=(np.maximum(dYa, dXa), 3), dtype=np.float32)
itbuffer.fill(np.nan)
# Obtain coordinates along the line using a form of Bresenham's algorithm
negY = P1Y > P2Y
negX = P1X > P2X
if P1X == P2X: # vertical line segment
itbuffer[:, 0] = P1X
if negY:
itbuffer[:, 1] = np.arange(P1Y - 1, P1Y - dYa - 1, -1)
else:
itbuffer[:, 1] = np.arange(P1Y + 1, P1Y + dYa + 1)
elif P1Y == P2Y: # horizontal line segment
itbuffer[:, 1] = P1Y
if negX:
itbuffer[:, 0] = np.arange(P1X - 1, P1X - dXa - 1, -1)
else:
itbuffer[:, 0] = np.arange(P1X + 1, P1X + dXa + 1)
else: # diagonal line segment
steepSlope = dYa > dXa
if steepSlope:
slope = dX.astype(float) / dY.astype(float)
if negY:
itbuffer[:, 1] = np.arange(P1Y - 1, P1Y - dYa - 1, -1)
else:
itbuffer[:, 1] = np.arange(P1Y + 1, P1Y + dYa + 1)
itbuffer[:, 0] = (slope * (itbuffer[:, 1] - P1Y)).astype(int) + P1X
else:
slope = dY.astype(float) / dX.astype(float)
if negX:
itbuffer[:, 0] = np.arange(P1X - 1, P1X - dXa - 1, -1)
else:
itbuffer[:, 0] = np.arange(P1X + 1, P1X + dXa + 1)
itbuffer[:, 1] = (slope * (itbuffer[:, 0] - P1X)).astype(int) + P1Y
# Remove points outside of image
colX = itbuffer[:, 0]
colY = itbuffer[:, 1]
itbuffer = itbuffer[(colX >= 0) & (colY >= 0) & (colX < imageW) & (colY < imageH)]
# Get intensities from img ndarray
itbuffer[:, 2] = img[itbuffer[:, 1].astype(np.uint), itbuffer[:, 0].astype(np.uint)]
return itbuffer
def panel_rotation(panels_series, solar_roof_area):
high_reso = cv2.pyrUp(solar_roof_area)
rows, cols = high_reso.shape
high_reso_new = cv2.pyrUp(new_image)
for _ in range(panels_series - 2):
for col in range(0, cols, l + 1):
for row in range(0, rows, w + 1):
# Rectangular Region of interest for solar panel area
solar_patch = high_reso[row:row + (w + 1) * pw + 1, col:col + ((l * pl) + 3)]
r, c = solar_patch.shape
# Rotation of rectangular patch according to the angle provided
patch_rotate = np.array([[col, row], [c + col, row], [c + col, r + row], [col, r + row]], np.int32)
rotated_patch_points = rotation((col + c) / 2, row + r / 2, patch_rotate, solar_angle)
rotated_patch_points = np.array(rotated_patch_points, np.int32)
# Check for if rotated points go outside of the image
if (rotated_patch_points > 0).all():
solar_polygon = Polygon(rotated_patch_points)
polygon_points = np.array(solar_polygon.exterior.coords, np.int32)
# Appending points of the image inside the solar area to check the intensity
patch_intensity_check = []
# Point polygon test for each rotated solar patch area
for j in range(rows):
for k in range(cols):
if cv2.pointPolygonTest(polygon_points, (k, j), False) == 1:
patch_intensity_check.append(high_reso[j, k])
# Check for the region available for Solar Panels
if np.mean(patch_intensity_check) == 255:
# Moving along the length of line to segment solar panels in the patch
solar_line_1 = createLineIterator(rotated_patch_points[0], rotated_patch_points[1], high_reso)
solar_line_1 = solar_line_1.astype(int)
solar_line_2 = createLineIterator(rotated_patch_points[3], rotated_patch_points[2], high_reso)
solar_line_2 = solar_line_2.astype(int)
line1_points = []
line2_points = []
if len(solar_line_2) > 10 and len(solar_line_1) > 10:
# Remove small unwanted patches
cv2.fillPoly(high_reso, [rotated_patch_points], 0)
cv2.fillPoly(high_reso_new, [rotated_patch_points], 0)
cv2.polylines(high_reso_orig, [rotated_patch_points], 1, 0, 2)
cv2.polylines(high_reso_new, [rotated_patch_points], 1, 0, 2)
cv2.fillPoly(high_reso_orig, [rotated_patch_points], (0, 0, 255))
cv2.fillPoly(high_reso_new, [rotated_patch_points], (0, 0, 255))
for i in range(5, len(solar_line_1), 5):
line1_points.append(solar_line_1[i])
for i in range(5, len(solar_line_2), 5):
line2_points.append(solar_line_2[i])
# Segmenting Solar Panels in the Solar Patch
for points1, points2 in zip(line1_points, line2_points):
x1, y1, _ = points1
x2, y2, _ = points2
cv2.line(high_reso_orig, (x1, y1), (x2, y2), (0, 0, 0), 1)
cv2.line(high_reso_new, (x1, y1), (x2, y2), (0, 0, 0), 1)
# Number of Solar Panels in series (3/4/5)
panels_series = panels_series - 1
result = Image.fromarray(high_reso_orig)
resut_2 = Image.fromarray(high_reso_new)
result.save('output' + fname )
resut_2.save('panels' + fname)
plt.figure()
plt.axis('off')
plt.imshow(high_reso_orig)
plt.figure()
plt.axis('off')
plt.imshow(high_reso_new)
plt.show()
if __name__ == "__main__":
images = glob.glob('1.jpg')
# latitude = ??
# pl, pw, l, w, solar_angle = solar_panel_params()
# length, width = pixels_per_mm(latitude)
for fname in images:
# pl = No of panels together as length commonside, pw = Same as for pw here w = width
# l = Length of panel in mm, w = Width of panel in mm
# solar_angle = Angle for rotation
pl, pw, l, w, solar_angle = 4, 1, 8, 5, 30
image = cv2.imread(fname)
img = cv2.pyrDown(image)
print('image shape : ',img.shape)
n_white_pix = np.sum(img==255)
print('num of white pixels : ',n_white_pix)
# Upscaling of Image
high_reso_orig = cv2.pyrUp(image)
# White blank image for contours of Canny Edge Image
canny_contours = white_image(image)
# White blank image for contours of original image
image_contours = white_image(image)
# White blank images removing rooftop's obstruction
image_polygons = grays(canny_contours)
canny_polygons = grays(canny_contours)
# Gray Image
grayscale = grays(image)
plt.figure()
plt.title('grayscale')
plt.imshow(image, cmap='gray')
# Edge Sharpened Image
sharp_image = sharp(grayscale)
plt.figure()
plt.title('sharp_image')
plt.imshow(sharp_image, cmap='gray')
# Canny Edge
edged = cv2.Canny(sharp_image, 180, 240)
plt.figure()
plt.title('edge_image')
plt.imshow(sharp_image, cmap='gray')
# Otsu Threshold (Automatic Threshold)
thresh = cv2.threshold(sharp_image, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
plt.figure()
plt.title('Threshold_image')
plt.imshow(sharp_image, cmap='gray')
# Contours in Original Image
contours_img(cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2])
# Contours in Canny Edge Image
contours_canny(cv2.findContours(edged, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2])
# Optimum place for placing Solar Panels
solar_roof = cv2.bitwise_and(image_polygons, canny_polygons)
plt.figure()
plt.title('solar_roof_area')
plt.imshow(solar_roof, cmap='gray')
n_white_pix = np.sum(solar_roof==255)
print('solar white pix : ',n_white_pix)
print('size of solar roof : ',solar_roof.shape)
new_image = white_image(image)
plt.figure()
plt.title('new_image')
plt.imshow(new_image, cmap='gray')
print('new image shape',new_image.shape)
# Rotation of Solar Panels
panel_rotation(pl, solar_roof)
plt.show()