-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
99 lines (87 loc) · 3.61 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
"""Returns random numbers used for weight initialization of the layers"""
fan_in = layer.weight.data.size()[0]
lim = 1./np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
"""Actor (Policy) Model"""
def __init__(self, state_size, action_size, seed, fc1_units=400, fc2_units=300, leakiness=0.001):
"""
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed to use
fc1_units (int): Number of nodes for first hidden layer
fc2_units (int): Number of nodes for second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.bn1 = nn.BatchNorm1d(fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.leakiness = leakiness
self.reset_parameters()
def reset_parameters(self):
"""Initializes weights with random values"""
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build an actor network that maps states to actions
Maps state to action values
Args:
state (torch.Tensor): State (or rows of states)
Returns:
torch.Tensor: Tensor of action values for state(s)
"""
if state.dim()==1: state = torch.unsqueeze(state, 0)
x = F.leaky_relu(self.fc1(state), self.leakiness)
x = self.bn1(x)
x = F.leaky_relu(self.fc2(x), self.leakiness)
return torch.tanh(self.fc3(x))
class Critic(nn.Module):
"""Critic (Value) Model"""
def __init__(self, state_size, action_size, seed, fc1_units=400, fc2_units=300, leakiness=0.001):
"""
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed to use
fc1_units (int): Number of nodes for first hidden layer
fc2_units (int): Number of nodes for second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.bn1 = nn.BatchNorm1d(fc1_units)
self.fc2 = nn.Linear(fc1_units+action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.leakiness = leakiness
self.reset_parameters()
def reset_parameters(self):
"""Initializes weights with random values"""
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""
Maps (state, action) to Q-value
Args:
state (torch.Tensor): State (or rows of states)
action (torch.Tensor): Action (or rows of actions)
Returns:
torch.Tensor: Tensor of action values for state(s)
"""
if state.dim()==1: state = torch.unsqueeze(state, 0)
x = F.leaky_relu(self.fc1(state), self.leakiness)
x = self.bn1(x)
x = torch.cat((x, action), dim=1)
x = F.leaky_relu(self.fc2(x), self.leakiness)
return self.fc3(x)