-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetector.py
176 lines (136 loc) · 6.59 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.jit.annotations import Tuple, List, Dict, Optional
from thundernet.snet import SNet49
from thundernet.module import CEM, SAM, RCNNSubNetHead, ThunderNetPredictor
from core.roi_layers.ps_roi_align import PSRoIAlign
from core.bbox_tools import generate_anchors
from core.rpn import AnchorGenerator
from core.rpn import RegionProposalNetwork
from core.rpn import RPNHead
from core.roi_layers.poolers import MultiScaleRoIAlign
from core.roi_heads import RoIHeads
from core.transform import GeneralizedRCNNTransform
from collections import OrderedDict
import warnings
class DetectNet(nn.Module):
"""
if your backbone returns a Tensor, featmap_names is expected to be ['0'].
More generally, the backbone should return an OrderedDict[Tensor],
and in featmap_names you can choose which feature maps to use.
"""
def __init__(self, backbone, num_classes=None,
# RPN parameters
rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=100,
rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000,
rpn_mns_thresh=0.7,
rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3,
rpn_batch_size_per_image=256, rpn_positive_fraction=0.5,
# Box parameters
box_ps_roi_align=None, box_head=None, box_predictor=None,
box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100,
box_fg_iou_thresh=0.5,box_bg_iou_thresh=0.5,
box_batch_size_per_image=512, box_positive_fraction=0.25,
bbox_reg_weights=None):
super(DetectNet, self).__init__()
if not hasattr(backbone, "out_channels"):
raise ValueError(
"backbone should contain an attribute out_channels "
"specifying the number of output channels (assumed to be the "
"same for all the levels)")
assert isinstance(box_ps_roi_align, (MultiScaleRoIAlign, type(None)))
if num_classes is not None:
if box_predictor is not None:
raise ValueError("num_classes should be None when box_predictor is specified")
else:
if box_predictor is None:
raise ValueError("num_classes should not be None when box_predictor "
"is not specified")
out_channels = backbone.out_channels # 245
self.backbone = backbone
self.cem = CEM() # CEM module
self.sam = SAM() # SAM module
# rpn
anchor_sizes = ((32, 64, 128, 256, 512),) # anchor sizes
aspect_ratios = ((0.5, 0.75, 1.0, 1.33, 2.0),) # aspect ratios, paper pyperparameters
rpn_anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
self.rpn = RegionProposalNetwork(
rpn_anchor_generator, rpn_head,
rpn_fg_iou_thresh, rpn_bg_iou_thresh,
rpn_batch_size_per_image, rpn_positive_fraction,
rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_mns_thresh)
# ps roi align
if box_ps_roi_align is None:
box_ps_roi_align = MultiScaleRoIAlign(
featmap_names=['0', '1', '2', '3'],
output_size=7,
sampling_ratio=2)
# R-CNN subnet
if box_head is None:
resolution = box_ps_roi_align.output_size[0] # size: (7, 7)
representation_size = 1024
box_out_channels = 5
box_head = RCNNSubNetHead(
box_out_channels * resolution ** 2, # 5 * 7 * 7
representation_size)
if box_predictor is None:
representation_size = 1024
box_predictor = ThunderNetPredictor(representation_size, num_classes)
self.roi_heads = RoIHeads(
box_ps_roi_align, box_head, box_predictor,
box_fg_iou_thresh, box_bg_iou_thresh,
box_batch_size_per_image, box_positive_fraction,
bbox_reg_weights,
box_score_thresh, box_nms_thresh, box_detections_per_img)
self.transform = GeneralizedRCNNTransform()
def forward(self, images, targets=None):
# type: (List[Tensor], Optional[List[Dict[str, Tensor]]])
"""
Arguments:
images (list[Tensor]): images to be processed
targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])
for img in images:
val = img.shape[-2:]
assert len(val) == 2
original_image_sizes.append((val[0], val[1])) # (h, w)
# backbone
_, c4_feature, c5_feature = self.backbone(images)
images, targets = self.transform(images, targets) # transform to list
# cem
cem_feature = self.cem(c4_feature, c5_feature) # [20, 20, 245]
cem_feature_output = cem_feature
if isinstance(cem_feature, torch.Tensor):
cem_feature = OrderedDict([('0', cem_feature)])
# rpn
proposals, proposal_losses, rpn_output = self.rpn(images, cem_feature, targets)
# sam
sam_feature = self.sam(rpn_output, cem_feature_output)
if isinstance(sam_feature, torch.Tensor):
sam_feature = OrderedDict([('0', sam_feature)])
detections, detector_losses = self.roi_heads(sam_feature, proposals, images.image_sizes, targets)
#detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) # testing predict
return detector_losses, proposal_losses
def ThunderNet():
snet = SNet49()
snet.out_channels = 245
thundernet = DetectNet(snet, num_classes=80)
return thundernet
#if __name__ == '__main__':
# thundernet = ThunderNet()
# print('thundernet: ', thundernet)