forked from mansimov/unsupervised-videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
151 lines (126 loc) · 4.13 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import cudamat as cm
from cudamat import cudamat_conv_gemm as cc
from cudamat import gpu_lock2 as gpu_lock
import h5py
import os
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
from time import sleep
import pdb
import datetime
import time
import config_pb2
from google.protobuf import text_format
from random import randint
# Parameter is preety much a weight (consisting of weights and derivatives of weights)
class Param(object):
def __init__(self, w, config=None):
if type(w) == np.ndarray:
self.w_ = cm.CUDAMatrix(w)
elif type(w) == tuple:
self.w_ = cm.empty(w)
else:
self.w_ = w
self.dw_ = cm.empty_like(self.w_)
self.dw_history_ = cm.empty_like(self.w_)
self.dw_history_sqrt_ = cm.empty_like(self.w_)
self.dw_sqr_ = cm.empty_like(self.w_)
self.dw_history_.assign(0)
self.dw_.assign(0)
self.t_ = 0
if config is None:
pass
elif config.init_type == config_pb2.Param.CONSTANT:
self.w_.assign(config.scale)
elif config.init_type == config_pb2.Param.GAUSSIAN:
self.w_.fill_with_randn()
self.w_.mult(config.scale)
elif config.init_type == config_pb2.Param.UNIFORM:
self.w_.fill_with_rand()
self.w_.subtract(0.5)
self.w_.mult(2 * config.scale)
elif config.init_type == config_pb2.Param.PRETRAINED:
f = h5py.File(config.file_name)
mat = f[config.dataset_name].value
if len(mat.shape) == 1:
mat = mat.reshape(1, -1)
assert self.w_.shape == mat.shape
self.w_.overwrite(mat)
f.close()
else:
raise Exception('Unknown parameter initialization.')
self.eps_ = config.epsilon
self.momentum_ = config.momentum
self.l2_decay_ = config.l2_decay
self.rmsprop_decay_ = 0.9
self.gradient_clip_ = config.gradient_clip
self.eps_decay_factor = config.eps_decay_factor
self.eps_decay_after = config.eps_decay_after
def __repr__(self):
return self.w_.asarray().__repr__()
def __str__(self):
return self.w_.asarray().__str__()
def Load(self, f, name):
if name in f.keys():
self.w_.overwrite(f[name].value)
self.dw_history_.overwrite(f['%s_grad' % name].value)
self.t_ = f.attrs.get('%s_t' % name, 0)
else:
print "%s not found." % name
def Save(self, f, name):
w_dset = f.create_dataset(name, self.w_.shape, dtype=np.float32)
w_dset[:, :] = self.w_.asarray()
w_dset = f.create_dataset('%s_grad' % name, self.dw_history_.shape, dtype=np.float32)
w_dset[:, :] = self.dw_history_.asarray()
f.attrs.__setitem__('%s_t' % name, self.t_)
def GetW(self):
return self.w_
def GetdW(self):
return self.dw_
def Update(self):
if self.eps_decay_after > 0:
eps = self.eps_ * np.power(self.eps_decay_factor, self.t_ / self.eps_decay_after)
else:
eps = self.eps_
"""
# RMSPROP
self.dw_history_.mult(self.rmsprop_decay_)
self.dw_.mult(self.dw_, target=self.dw_sqr_)
self.dw_history_.add_mult(self.dw_sqr_, mult=(1-self.rmsprop_decay_))
self.dw_history_.add(1e-07)
cm.sqrt(self.dw_history_, target=self.dw_history_sqrt_)
self.dw_.mult(-self.eps_)
self.dw_.divide(self.dw_history_sqrt_)
if self.gradient_clip_ > 0:
self.dw_.upper_bound_mod(self.gradient_clip_)
self.w_.add(self.dw_)
"""
self.dw_history_.mult(self.momentum_)
self.dw_.add_mult(self.w_, mult=self.l2_decay_)
self.dw_history_.add_mult(self.dw_, -self.eps_)
if self.gradient_clip_ > 0:
self.dw_history_.upper_bound_mod(self.gradient_clip_)
self.w_.add(self.dw_history_)
self.t_ += 1
def ReadDataProto(fname):
data_pb = config_pb2.Data()
with open(fname, 'r') as pbtxt:
text_format.Merge(pbtxt.read(), data_pb)
return data_pb
def ReadModelProto(fname):
data_pb = config_pb2.Model()
with open(fname, 'r') as pbtxt:
text_format.Merge(pbtxt.read(), data_pb)
return data_pb
def WritePbtxt(proto, fname):
with open(fname, 'w') as f:
text_format.PrintMessage(proto, f)
def LockGPU(max_retries=10, board=-1):
# Assuming you already got GPU lock
cm.cuda_set_device(board)
cm.cublas_init()
return board
def FreeGPU(board):
cm.cublas_shutdown()