Skip to content

[A-L] (2023/24) Foglio 7 - Esercizio 7 #187

Discussion options

You must be logged in to vote

Per un evento $A$ sia $1_A$ la variabile aleatoria che rende $1$ se $\omega \in A$ e $0$ se $\omega \in A^{\complement}$, quindi

$$ 1_A = \begin{cases} 1 & \omega \in A \\ 0 & \omega \in A^{\complement} \end{cases} $$

Siano $A$ e $B$ eventi. Verificare che $1_{A^{\complement}} = 1 - 1_A$ e che $1_{A \cap B} = 1_A 1_B$

$$ 1 - 1_A = \begin{cases} 1 - 1 & \omega \in A \\ 1 - 0 & \omega \in A^{\complement} \end{cases} = \begin{cases} 0 & \omega \in A \\ 1 & \omega \in A^{\complement} \end{cases} = 1_{A^{\complement}} $$

Per il secondo punto

$$ 1_A 1_B = \begin{cases} 1 \cdot 1 & \omega \in A \land \omega \in B \\ 1 \cdot 0 & \omega \in A \land \omega \notin B\\ 0 \cdot 1 & \omega \notin A \l…

Replies: 1 comment

Comment options

You must be logged in to vote
0 replies
Answer selected by Elia-Belli
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
[A-L] (2023/24) Foglio 7 Esercizi tratti dal 7° foglio di esercizi del prof. Bertini (A.A. 2023/24)
2 participants
Converted from issue

This discussion was converted from issue #55 on January 25, 2024 16:08.