-
Notifications
You must be signed in to change notification settings - Fork 178
/
test_generator.py
278 lines (223 loc) · 13 KB
/
test_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import torch.nn as nn
from torchvision.utils import make_grid as make_image_grid
from torchvision.utils import save_image
import argparse
import os
import time
from cp_dataset_test import CPDatasetTest, CPDataLoader
from networks import ConditionGenerator, load_checkpoint, make_grid
from network_generator import SPADEGenerator
from tensorboardX import SummaryWriter
from utils import *
import torchgeometry as tgm
from collections import OrderedDict
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=1)
parser.add_argument('--fp16', action='store_true', help='use amp')
# Cuda availability
parser.add_argument('--cuda',default=False, help='cuda or cpu')
parser.add_argument('--test_name', type=str, default='test', help='test name')
parser.add_argument("--dataroot", default="./data/zalando-hd-resize")
parser.add_argument("--datamode", default="test")
parser.add_argument("--data_list", default="test_pairs.txt")
parser.add_argument("--output_dir", type=str, default="./Output")
parser.add_argument("--datasetting", default="unpaired")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument('--tensorboard_dir', type=str, default='./data/zalando-hd-resize/tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, default='./eval_models/weights/v0.1/mtviton.pth', help='tocg checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='./eval_models/weights/v0.1/gen.pth', help='G checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--semantic_nc", type=int, default=13)
parser.add_argument("--output_nc", type=int, default=13)
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
# training
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# Hyper-parameters
parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")
# generator
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='most', # normal: 256, more: 512
help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator")
opt = parser.parse_args()
return opt
def load_checkpoint_G(model, checkpoint_path,opt):
if not os.path.exists(checkpoint_path):
print("Invalid path!")
return
state_dict = torch.load(checkpoint_path)
new_state_dict = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict.items()])
new_state_dict._metadata = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict._metadata.items()])
model.load_state_dict(new_state_dict, strict=True)
if opt.cuda :
model.cuda()
def test(opt, test_loader, tocg, generator):
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
if opt.cuda:
gauss = gauss.cuda()
# Model
if opt.cuda :
tocg.cuda()
tocg.eval()
generator.eval()
if opt.output_dir is not None:
output_dir = opt.output_dir
else:
output_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'output')
grid_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'grid')
os.makedirs(grid_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
num = 0
iter_start_time = time.time()
with torch.no_grad():
for inputs in test_loader.data_loader:
if opt.cuda :
pose_map = inputs['pose'].cuda()
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic'].cuda()
clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
densepose = inputs['densepose'].cuda()
im = inputs['image']
input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
pose_map = inputs['pose']
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting]
label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic']
clothes = inputs['cloth'][opt.datasetting] # target cloth
densepose = inputs['densepose']
im = inputs['image']
input_label, input_parse_agnostic = label, parse_agnostic
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float))
# down
pose_map_down = F.interpolate(pose_map, size=(256, 192), mode='bilinear')
pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(256, 192), mode='nearest')
input_label_down = F.interpolate(input_label, size=(256, 192), mode='bilinear')
input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(256, 192), mode='nearest')
agnostic_down = F.interpolate(agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(clothes, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(densepose, size=(256, 192), mode='bilinear')
shape = pre_clothes_mask.shape
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(opt,input1, input2)
# warped cloth mask one hot
if opt.cuda :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float))
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.cuda :
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
else:
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
if opt.cuda :
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
else:
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
# warped cloth
N, _, iH, iW = clothes.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW,opt)
warped_grid = grid + flow_norm
warped_cloth = F.grid_sample(clothes, warped_grid, padding_mode='border')
warped_clothmask = F.grid_sample(pre_clothes_mask, warped_grid, padding_mode='border')
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth = warped_cloth * warped_clothmask + torch.ones_like(warped_cloth) * (1-warped_clothmask)
output = generator(torch.cat((agnostic, densepose, warped_cloth), dim=1), parse)
# visualize
unpaired_names = []
for i in range(shape[0]):
grid = make_image_grid([(clothes[i].cpu() / 2 + 0.5), (pre_clothes_mask[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
(warped_cloth[i].cpu().detach() / 2 + 0.5), (warped_clothmask[i].cpu().detach()).expand(3, -1, -1), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(pose_map[i].cpu()/2 +0.5), (warped_cloth[i].cpu()/2 + 0.5), (agnostic[i].cpu()/2 + 0.5),
(im[i]/2 +0.5), (output[i].cpu()/2 +0.5)],
nrow=4)
unpaired_name = (inputs['c_name']['paired'][i].split('.')[0] + '_' + inputs['c_name'][opt.datasetting][i].split('.')[0] + '.png')
save_image(grid, os.path.join(grid_dir, unpaired_name))
unpaired_names.append(unpaired_name)
# save output
save_images(output, unpaired_names, output_dir)
num += shape[0]
print(num)
print(f"Test time {time.time() - iter_start_time}")
def main():
opt = get_opt()
print(opt)
print("Start to test %s!")
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
# create test dataset & loader
test_dataset = CPDatasetTest(opt)
test_loader = CPDataLoader(opt, test_dataset)
# visualization
# if not os.path.exists(opt.tensorboard_dir):
# os.makedirs(opt.tensorboard_dir)
# board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.test_name, opt.datamode, opt.datasetting))
## Model
# tocg
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
# generator
opt.semantic_nc = 7
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint,opt)
load_checkpoint_G(generator, opt.gen_checkpoint,opt)
# Train
test(opt, test_loader, tocg, generator)
print("Finished testing!")
if __name__ == "__main__":
main()