-
Notifications
You must be signed in to change notification settings - Fork 101
/
svm-rbf分類-02-鳶尾花.py
88 lines (61 loc) · 1.87 KB
/
svm-rbf分類-02-鳶尾花.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
# 訓練資料
# 依序為花萼長度(sepal_length), 花萼寬度(sepal_width), 花瓣長度(petal_length), 花瓣寬度(petal_width), 品種(species)
data=np.genfromtxt('iris.csv', dtype=None, delimiter=',')
X=[]
Y=[]
# 訓練資料範圍, 為了繪圖用
a_min=999
a_max=-999
b_min=999
b_max=-999
for (sepal_length, sepal_width, petal_length, petal_width, species) in data:
s=species.decode('UTF-8')
#a=sepal_length
#b=sepal_width
a=petal_length
b=petal_width
if a>a_max: a_max=a
if a<a_min: a_min=a
if b>b_max: b_max=b
if b<b_min: b_min=b
X.append([a, b])
# 品種共有: setosa, versicolor, virginica
if s=='versicolor':
Y.append(0)
else:
Y.append(1)
X=np.array(X)
Y=np.array(Y)
# 建立分類模型
clf = svm.SVC(kernel='rbf', gamma=1, C=1)
clf.fit(X, Y)
# 設定圖形尺寸
plt.figure(figsize=(12, 9))
#plt.clf()
# 畫出 support vectors
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=30, facecolors='y', zorder=10)
plt.axis('tight')
# 由訓練資料的標籤畫出不同顏色區域
x_min = a_min - 1.5
x_max = a_max + 1.5
y_min = b_min - 1.5
y_max = b_max + 1.5
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, 0.5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
# 畫出 training vectors
label_0 = np.array(Y) == 0
X_0 = X[label_0]
label_1 = np.array(Y) == 1
X_1 = X[label_1]
plt.scatter(X_0[:,0], X_0[:,1], c='b', s=120)
plt.scatter(X_1[:,0], X_1[:,1], c='g', s=120)
# 繪圖
plt.show()