forked from rutup1595/gui-codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathallmargin.sci
294 lines (283 loc) · 12.4 KB
/
allmargin.sci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Sys = ALLMARGIN(SYS) provides detailed information about the gain, phase,
// and delay margins and the corresponding crossover frequencies of the
// SISO open-loop model SYS.
//
// The output S is a structure with the following fields:
// * GMF: all -180 deg crossover frequencies in rad/TimeUnit
// * GM: corresponding gain margins (g.m. = 1/G where G is the
// gain at crossover)
// * PMF: all 0 dB crossover frequencies (in rad/TimeUnit)
// * PM: corresponding phase margins (in degrees)
// * DM, DMF: delay margins (in the units specified
// in SYS.TimeUnit for continuous-time systems, and in multiples of
// the sample time for discrete-time systems) and corresponding
// critical frequencies
// * Stable: 1 if stable, 0 if unstable, and NaN
// if stability cannot be assessed (as in the case of most FRD systems)
//
// Sys = ALLMARGIN(MAG,PHASE,W,TS) computes the stability margins from the
// frequency response data W, MAG, PHASE and the sampling time TS. ALLMARGIN
// expects gain values MAG in absolute units and phase values PHASE in
// degrees.
//
// EXAMPLE :
// sys = syslin('c',(s +8)/(s^3+7*s^2+8*s+6))
// a = allmargin(sys1)
//
//// References :
// http://www.scilab.org/resources/documentation ;
// http://spoken-tutorial.org/
// http://in.mathworks.com/help/control/ ;
// http://in.mathworks.com/help/control/ref/allmargin.html ;
// https://en.wikipedia.org/wiki/Control_systems;
//
//
// Author (s):
// Sanchit Gupta & Ashutosh Kumar Bhargava
//-----------------------------------------------------------------------------------------------------------------------//
function [output] = allmargin(varargin)
[lhs,rhs]=argn(0)
if rhs == 0 then
error(msprintf(gettext("Function has no input argument..")))
elseif rhs == 2 then
error(msprintf(gettext("Incorrect number of input arguments.")))
elseif rhs >= 5 then
error(msprintf(gettext("Incorrect number of input arguments.")))
end
if rhs == 1 then
sysData = varargin(1)
select typeof(sysData)
case "rational" then
case "state-space" then
sysData = ss2tf(sysData)
else
error(msprintf(gettext("Incompatible input argument.")))
end
sizeData = size(sysData)
if (isequal(sizeData,[1 1])) == %F then
error(msprintf(gettext("Input model must be SISO type.")))
end
elseif rhs == 3 | rhs == 4 then
tempSize = size(varargin(1))
if typeof(varargin(3)) == 'hypermat' | isequal(gsort(varargin(3),'c','i'),varargin(3)) == %F then
error(msprintf(gettext("frequency must be non-negative real valued vector and sorted in increasing order.")))
elseif typeof(varargin(1)) == 'hypermat' then
error(msprintf(gettext("mag must be non-negative real valued vector.")))
elseif typeof(varargin(1)) <> 'constant' | typeof(varargin(2)) <> 'constant' | typeof(varargin(3)) <> 'constant' then
error(msprintf(gettext("mag, phase, freq must be real valued vector with equal dimension")))
elseif isequal(tempSize,size(varargin(2))) == %F | isequal(tempSize,size(varargin(3))) == %F then
error(msprintf(gettext("mag, phase, freq must be real valued vector with equal dimension")))
//elseif size(find(phasemag(varargin(1))<>0),"r") ~= 0 | size(find(phasemag(varargin(2))<>0),"r") ~= 0 | size(find(phasemag(varargin(3))<>0),"r") ~= 0 then
//error(msprintf(gettext("mag, phase, freq must be real valued vector with equal dimension")))
end
end
//------------------------------------------------------------------------------------------------------------------//
if rhs == 1 then
// Calculating phase margin
// Code is taken from p_margin
eps=1.e-7;// threshold used for testing if complex numbers are real or pure imaginary
h = sysData
if h.dt=="c" then //continuous time case
w=poly(0,"w");
niw=horner(h.num,%i*w);
diw=horner(h.den,%i*w);
// |n(iw)/d(iw)|=1 <-- (n(iw)*n(-iw))/(d(iw)*d(-iw))=1 <-- (n(iw)*n(-iw)) - (d(iw)*d(-iw))=0
w=roots(real(niw*conj(niw)-diw*conj(diw)),"e");
//select positive real roots
ws=real(w(find((abs(imag(w))<eps)&(real(w)>0)))); //frequency points with unitary modulus
if ws==[] then
phm=[];
fr=[];
//return
end
f=horner(h,%i*ws);
else //discrete time case
if h.dt=="d" then
dt=1;
else
dt=h.dt;
end
// |h(e^(i*w*dt))|=1 <-- h(e^(i*w*dt))*h(e^(-i*w*dt))
z=poly(0,varn(h.den));
sm=simp_mode();
simp_mode(%f);
hh=h*horner(h,1/z)-1;
simp_mode(sm);
//find the numerator roots
z=roots(hh.num,"e");
z(abs(abs(z)-1)>eps)=[];// retain only roots with modulus equal to 1
w=log(z)/(%i*dt);
ws=real(w(abs(imag(w))<eps&real(w)>0)); //frequency points with unitary modulus
if ws==[] then
phm=%inf;
fr=[];
//return
end
f=horner(h,exp(%i*ws*dt));
end
phi=atand(imag(f),real(f));// phase of the frequency response (in [-180 180])
//avoid near 0 negative phases that will give phm=180 instead of -180
phi(phi>-1e-12&phi<0)=0;
//compute the margins
phm=pmodulo(phi,360)-180;
//select the min value together with associated frequency in Hz
frp=ws///(2*%pi);
//---------------------------------------------------------------------------------------------------------------------------
// calculatin phase margin
// code is taken from g_margin
epsr=1.e-7;//used for testing if complex numbers are real
eps1=1.e-7;//used for testing if complex numbers have a modulus near 1
epssing=1e-10; //used for testing if arguments are not singular points of h
if h.dt=="c" then //continuous time case
// get s such as h(s)=h(-s) and s=iw
s=%i*poly(0,"w");
//compute h(s)-h(-s)=num/den
num=imag(horner(h.num,s)*conj(horner(h.den,s)))
den=real(horner(h.den,s)*conj(horner(h.den,s)))
//necessary condition
w=roots(num,"e");
ws=real(w(abs(imag(w))<epsr&real(w)<=0)) //points where phase is -180°
//remove nearly singular points
ws(abs(horner(num,ws))>=epssing*abs(horner(den,ws)))=[]
if ws==[] then gm=%inf,fr=[],return,end
mingain=real(freq(h.num,h.den,%i*ws))
else //discrete time case
if h.dt=="d" then dt=1,else dt=h.dt,end
//get z such as h(z)=h(1/z) and z=e^(%i*w*dt)
//form hh=h(z)-h(1/z)
z=poly(0,varn(h.den));
sm=simp_mode();simp_mode(%f);hh=h-horner(h,1/z);simp_mode(sm)
//find the numerator roots
z=roots(hh.num,"e");
z(abs(abs(z)-1)>eps1)=[]// retain only roots with modulus equal to 1
//remove nearly singular points
z(abs(horner(hh.num,z))>=epssing*abs(horner(hh.den,z)))=[];
w=log(z)/(%i*dt)
ws=real(w(abs(imag(w))<epsr)) //points where phase is -180°
if ws==[] then gm=%inf,fr=[],return,end
mingain=real(horner(h,exp(%i*ws*dt)))
end
k=find(mingain<0)
if k==[] then
gm=%inf;
fr=[];
//return
end
mingain=abs(mingain(k));
ws=abs(ws(k))// select positive frequency
gm=1/mingain//-20*log(mingain)/log(10) //tranform into Db
frg=ws //transform in Hz
//------------------------------------------------------------------------------------------------------------------//
for ii = 1: length(phm)
delayData(ii,1) = phm(ii,1)*2*%pi/(360*frp(ii,1))
if delayData(ii,1) < 0 then
delayData(ii,1) = delayData(ii,1)+2*%pi/frp(ii,1)
end
end
if sysData.dt ~= 'c' then
if sysData.dt == 'd' then
sysData.dt = 1
end
delayData = abs(delayData)/sysData.dt
end
//-------------------------------------------------------------------------------------------------------------//
// stability
stable = 0
if sysData.dt == 'c'
// Continuous system
if real(roots(sysData.den))< 0
// system is stable
stable = 1 ;
end
else
//Discrete System
if (real(roots(sysData.den))< 1)& (real(roots(sysData.den))> -1)
// system is stable
stable = 1 ;
end
end
//--------------------------------------------------------------------------------------------------------------//
output = struct('GM',gm,'GMF',frg','PM',phm','PMF',frp','DM',delayData','DMF',frp','stable',stable)
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
elseif rhs == 3 | rhs == 4 then
eps=1.e-2;
magData = varargin(1)
phaseData = varargin(2)
freqData = varargin(3)
nf = length(freqData);
freqData = matrix(freqData,[1 nf]);
magData = matrix(magData,[1 nf]);
phaseData = matrix(phaseData,[1 nf]);
logmag = zeros(1,nf);
isZero = (magData==0);
logmag(:,isZero) = -%inf;
logmag(:,~isZero) = log10(magData(~isZero));
phaseData = unwrap((%pi/180)*phaseData);
if nf>2 & freqData(1)==0
freqData(1) = eps * freqData(2);
end
logw = log10(freqData);
twopi = 2*%pi;
k = floor((phaseData+%pi)/twopi);
lowcross = (2*k(:,1:nf-1)-1)*%pi;
//lowcross = (2*k(:,1)-1)*%pi;
ic = find(phaseData(:,2:nf)<lowcross | phaseData(:,2:nf)>=lowcross+twopi);
//ic = ic(1:min(50,end));
ic = ic(1:min(50,length(ic)));
Pc = lowcross(:,ic) + twopi*(phaseData(:,ic+1)>phaseData(:,ic));
t = (Pc - phaseData(:,ic)) ./ (phaseData(:,ic+1) - phaseData(:,ic));
frg = logw(:,ic) + t .* (logw(:,ic+1)-logw(:,ic));
gm = logmag(:,ic) + t .* (logmag(:,ic+1)-logmag(:,ic));
tol = %pi/6;
if nf>=2,
// Extrapolation toward freqData=0
pcs = (2*round((phaseData(1)+%pi)/twopi)-1)*%pi;
if abs(phaseData(1)-pcs)<tol & abs(phaseData(2)-phaseData(1))~=0,
t = (pcs-phaseData(1)) / (phaseData(2)-phaseData(1));
if t<0,
frg = [frg , logw(1) + t * (logw(2)-logw(1))];
gm = [gm , logmag(1) + t * (logmag(2)-logmag(1))];
end
end
// Extrapolation toward freqData=%inf
pce = (2*round((phaseData(nf)+%pi)/twopi)-1)*%pi;
if abs(phaseData(nf)-pce)<tol & abs(phaseData(nf)-phaseData(nf-1))~=0,
t = (pcs-phaseData(nf-1)) / (phaseData(nf)-phaseData(nf-1));
if t>0,
frg = [frg , logw(nf-1) + t * (logw(nf)-logw(nf-1))];
gm = [gm , logmag(nf-1) + t * (logmag(nf)-logmag(nf-1))];
end
end
end
if isempty(gm)
gm = zeros(1,0); frg = zeros(1,0);
else
[frg,is] = gsort(frg);
gm = 10.^(-gm(is));
frg = 10.^frg;
end
// Phase margins calculation(0dB gain crossings)
ic = find(logmag(:,1:nf-1) .* logmag(:,2:nf) <= 0 & logmag(:,1:nf-1)~=logmag(:,2:nf));
ic = ic(1:min(50,length(ic)));
t = -logmag(:,ic) ./ (logmag(:,ic+1) - logmag(:,ic));
frp = logw(:,ic) + t .* (logw(:,ic+1)-logw(:,ic));
phm = phaseData(:,ic) + t .* (phaseData(:,ic+1)-phaseData(:,ic));
if isempty(phm)
phm = zeros(1,0); frp = zeros(1,0);
else
[frp,is] = gsort(frp);
phm = pmodulo(phm(is),twopi)-%pi;
frp = 10.^frp;
phm = (180/%pi) * phm;
end
// Delay Data
for ii = 1: length(phm)
delayData(ii,1) = phm(ii,1)*2*%pi/(360*frp(ii,1))
if delayData(ii,1) < 0 then
delayData(ii,1) = delayData(ii,1)+2*%pi/frp(ii,1)
end
end
stable = %nan ;
output = struct('GM',gm,'GMF',frg','PM',phm','PMF',frp','DM',delayData','DMF',frp','stable',stable)
end
endfunction