forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gnn.py
75 lines (60 loc) · 2.58 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import copy
import itertools
import dgl
import dgl.function as fn
import networkx as nx
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class GNNModule(nn.Module):
def __init__(self, in_feats, out_feats, radius):
super().__init__()
self.out_feats = out_feats
self.radius = radius
new_linear = lambda: nn.Linear(in_feats, out_feats)
new_linear_list = lambda: nn.ModuleList([new_linear() for i in range(radius)])
self.theta_x, self.theta_deg, self.theta_y = \
new_linear(), new_linear(), new_linear()
self.theta_list = new_linear_list()
self.gamma_y, self.gamma_deg, self.gamma_x = \
new_linear(), new_linear(), new_linear()
self.gamma_list = new_linear_list()
self.bn_x = nn.BatchNorm1d(out_feats)
self.bn_y = nn.BatchNorm1d(out_feats)
def aggregate(self, g, z):
z_list = []
g.ndata['z'] = z
g.update_all(fn.copy_src(src='z', out='m'), fn.sum(msg='m', out='z'))
z_list.append(g.ndata['z'])
for i in range(self.radius - 1):
for j in range(2 ** i):
g.update_all(fn.copy_src(src='z', out='m'), fn.sum(msg='m', out='z'))
z_list.append(g.ndata['z'])
return z_list
def forward(self, g, lg, x, y, deg_g, deg_lg, pm_pd):
pmpd_x = F.embedding(pm_pd, x)
sum_x = sum(theta(z) for theta, z in zip(self.theta_list, self.aggregate(g, x)))
g.edata['y'] = y
g.update_all(fn.copy_edge(edge='y', out='m'), fn.sum('m', 'pmpd_y'))
pmpd_y = g.ndata.pop('pmpd_y')
x = self.theta_x(x) + self.theta_deg(deg_g * x) + sum_x + self.theta_y(pmpd_y)
n = self.out_feats // 2
x = th.cat([x[:, :n], F.relu(x[:, n:])], 1)
x = self.bn_x(x)
sum_y = sum(gamma(z) for gamma, z in zip(self.gamma_list, self.aggregate(lg, y)))
y = self.gamma_y(y) + self.gamma_deg(deg_lg * y) + sum_y + self.gamma_x(pmpd_x)
y = th.cat([y[:, :n], F.relu(y[:, n:])], 1)
y = self.bn_y(y)
return x, y
class GNN(nn.Module):
def __init__(self, feats, radius, n_classes):
super(GNN, self).__init__()
self.linear = nn.Linear(feats[-1], n_classes)
self.module_list = nn.ModuleList([GNNModule(m, n, radius)
for m, n in zip(feats[:-1], feats[1:])])
def forward(self, g, lg, deg_g, deg_lg, pm_pd):
x, y = deg_g, deg_lg
for module in self.module_list:
x, y = module(g, lg, x, y, deg_g, deg_lg, pm_pd)
return self.linear(x)