forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
153 lines (134 loc) · 5.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""
import argparse
import networkx as nx
import time
import mxnet as mx
from mxnet import gluon
import numpy as np
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from gat import GAT
from utils import EarlyStopping
def elu(data):
return mx.nd.LeakyReLU(data, act_type='elu')
def evaluate(model, features, labels, mask):
logits = model(features)
logits = logits[mask].asnumpy().squeeze()
val_labels = labels[mask].asnumpy().squeeze()
max_index = np.argmax(logits, axis=1)
accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels)
return accuracy
def main(args):
# load and preprocess dataset
if args.dataset == 'cora':
data = CoraGraphDataset()
elif args.dataset == 'citeseer':
data = CiteseerGraphDataset()
elif args.dataset == 'pubmed':
data = PubmedGraphDataset()
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
ctx = mx.cpu(0)
else:
cuda = True
ctx = mx.gpu(args.gpu)
g = g.to(ctx)
features = g.ndata['feat']
labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
mask = g.ndata['train_mask']
mask = mx.nd.array(np.nonzero(mask.asnumpy())[0], ctx=ctx)
val_mask = g.ndata['val_mask']
val_mask = mx.nd.array(np.nonzero(val_mask.asnumpy())[0], ctx=ctx)
test_mask = g.ndata['test_mask']
test_mask = mx.nd.array(np.nonzero(test_mask.asnumpy())[0], ctx=ctx)
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# create model
heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
model = GAT(g,
args.num_layers,
in_feats,
args.num_hidden,
n_classes,
heads,
elu,
args.in_drop,
args.attn_drop,
args.alpha,
args.residual)
if args.early_stop:
stopper = EarlyStopping(patience=100)
model.initialize(ctx=ctx)
# use optimizer
trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr})
dur = []
for epoch in range(args.epochs):
if epoch >= 3:
t0 = time.time()
# forward
with mx.autograd.record():
logits = model(features)
loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze())
loss.backward()
trainer.step(mask.shape[0])
if epoch >= 3:
dur.append(time.time() - t0)
print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000))
val_accuracy = evaluate(model, features, labels, val_mask)
print("Validation Accuracy {:.4f}".format(val_accuracy))
if args.early_stop:
if stopper.step(val_accuracy, model):
break
print()
if args.early_stop:
model.load_parameters('model.param')
test_accuracy = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(test_accuracy))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GAT')
register_data_args(parser)
parser.add_argument("--gpu", type=int, default=-1,
help="which GPU to use. Set -1 to use CPU.")
parser.add_argument("--epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--num-heads", type=int, default=8,
help="number of hidden attention heads")
parser.add_argument("--num-out-heads", type=int, default=1,
help="number of output attention heads")
parser.add_argument("--num-layers", type=int, default=1,
help="number of hidden layers")
parser.add_argument("--num-hidden", type=int, default=8,
help="number of hidden units")
parser.add_argument("--residual", action="store_true", default=False,
help="use residual connection")
parser.add_argument("--in-drop", type=float, default=.6,
help="input feature dropout")
parser.add_argument("--attn-drop", type=float, default=.6,
help="attention dropout")
parser.add_argument("--lr", type=float, default=0.005,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4,
help="weight decay")
parser.add_argument('--alpha', type=float, default=0.2,
help="the negative slop of leaky relu")
parser.add_argument('--early-stop', action='store_true', default=False,
help="indicates whether to use early stop or not")
args = parser.parse_args()
print(args)
main(args)