forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcn.py
148 lines (124 loc) · 4.21 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn
GCN with batch processing
"""
import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
def gcn_msg(edges):
return {'m' : edges.src['h']}
def gcn_reduce(nodes):
return {'h' : torch.sum(nodes.mailbox['m'], 1)}
class NodeApplyModule(nn.Module):
def __init__(self, in_feats, out_feats, activation=None):
super(NodeApplyModule, self).__init__()
self.linear = nn.Linear(in_feats, out_feats)
self.activation = activation
def forward(self, nodes):
h = self.linear(nodes.data['h'])
if self.activation:
h = self.activation(h)
return {'h' : h}
class GCN(nn.Module):
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN, self).__init__()
self.g = g
if dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = 0.
# input layer
self.layers = nn.ModuleList([NodeApplyModule(in_feats, n_hidden, activation)])
# hidden layers
for i in range(n_layers - 1):
self.layers.append(NodeApplyModule(n_hidden, n_hidden, activation))
# output layer
self.layers.append(NodeApplyModule(n_hidden, n_classes))
def forward(self, features):
self.g.ndata['h'] = features
for layer in self.layers:
# apply dropout
if self.dropout:
self.g.apply_nodes(apply_node_func=
lambda nodes: {'h': self.dropout(nodes.data['h'])})
self.g.update_all(gcn_msg, gcn_reduce, layer)
return self.g.pop_n_repr('h')
def main(args):
# load and preprocess dataset
# Todo: adjacency normalization
data = load_data(args)
features = torch.FloatTensor(data.features)
labels = torch.LongTensor(data.labels)
mask = torch.ByteTensor(data.train_mask)
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
if args.gpu < 0:
cuda = False
else:
cuda = True
torch.cuda.set_device(args.gpu)
features = features.cuda()
labels = labels.cuda()
mask = mask.cuda()
# create GCN model
g = DGLGraph(data.graph)
model = GCN(g,
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
F.relu,
args.dropout)
if cuda:
model.cuda()
# use optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
if epoch >= 3:
t0 = time.time()
# forward
logits = model(features)
logp = F.log_softmax(logits, 1)
loss = F.nll_loss(logp[mask], labels[mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
epoch, loss.item(), np.mean(dur), n_edges / np.mean(dur) / 1000))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN')
register_data_args(parser)
parser.add_argument("--dropout", type=float, default=0,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-3,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=20,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
args = parser.parse_args()
print(args)
main(args)