forked from adap/flower
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient_isic.py
162 lines (128 loc) · 6.15 KB
/
client_isic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File : client_isic.py
# Modified : 08.03.2022
# By : Sandra Carrasco <[email protected]>
import os
from collections import OrderedDict
import numpy as np
from typing import List, Tuple, Dict
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from argparse import ArgumentParser
import src.py.flwr as fl
import utils
from utils import Net, seed_everything , training_transforms, testing_transforms
import wandb
import warnings
warnings.filterwarnings("ignore")
seed = 2022
seed_everything(seed)
EXCLUDE_LIST = [
#"running",
#"num_batches_tracked",
"bn",
]
class Client(fl.client.NumPyClient):
"""Flower client implementing melanoma classification using PyTorch."""
def __init__(
self,
model: Net,
trainloader: torch.utils.data.DataLoader,
valloader: torch.utils.data.DataLoader,
testloader: torch.utils.data.DataLoader,
num_examples: Dict,
) -> None:
self.model = model
self.trainloader = trainloader
self.valloader = valloader
self.testloader = testloader
self.num_examples = num_examples
def get_properties(self, config):
return {}
def get_parameters(self) -> List[np.ndarray]:
parameters = []
for i, (name, tensor) in enumerate(self.model.state_dict().items()):
# print(f" [layer {i}] {name}, {type(tensor)}, {tensor.shape}, {tensor.dtype}")
# Check if this tensor should be included or not
exclude = False
for forbidden_ending in EXCLUDE_LIST:
if forbidden_ending in name:
exclude = True
if exclude:
continue
# Convert torch.Tensor to NumPy.ndarray
parameters.append(tensor.cpu().numpy())
return parameters
def set_parameters(self, parameters: List[np.ndarray]) -> None:
keys = []
for name in self.model.state_dict().keys():
# Check if this tensor should be included or not
exclude = False
for forbidden_ending in EXCLUDE_LIST:
if forbidden_ending in name:
exclude = True
if exclude:
continue
# Add to list of included keys
keys.append(name)
params_dict = zip(keys, parameters)
state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict})
self.model.load_state_dict(state_dict, strict=False)
def fit(
self, parameters: List[np.ndarray], config: Dict[str, str]
) -> Tuple[List[np.ndarray], int, Dict]:
# Set model parameters, train model, return updated model parameters
self.set_parameters(parameters)
self.model = utils.train(self.model, self.trainloader, self.valloader, self.num_examples, args.partition,
args.nowandb, device, args.log_interval, epochs=args.epochs, es_patience=3)
return self.get_parameters(), self.num_examples["trainset"], {}
def evaluate(
self, parameters: List[np.ndarray], config: Dict[str, str]
) -> Tuple[float, int, Dict]:
# WE DON'T EVALUATE OUR CLIENTS DECENTRALIZED
# Set model parameters, evaluate model on local test dataset, return result
self.set_parameters(parameters)
loss, auc, accuracy, f1 = utils.val(self.model, self.testloader, nn.BCEWithLogitsLoss(), f"_test",args.nowandb, device)
return float(loss), self.num_examples["testset"], {"accuracy": float(accuracy), "auc": float(auc), "f1": float(f1)}
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model", type=str, default='efficientnet-b2')
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--epochs", type=int, default=2)
parser.add_argument("--num_partitions", type=int, default=20)
parser.add_argument("--partition", type=int, default=0)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--tags", type=str, default='Exp 5. FedBN')
parser.add_argument("--nowandb", action="store_true")
parser.add_argument("--path", type=str, default='/workspace/melanoma_isic_dataset')
args = parser.parse_args()
# Setting up GPU for processing or CPU if GPU isn't available
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device( "cuda" if torch.cuda.is_available() else "cpu")
print(device)
# Load model
model = utils.load_model(args.model, device)
if not args.nowandb:
wandb.init(project="dai-healthcare" , entity='eyeforai', group='FL', tags=[args.tags], config={"model": args.model})
wandb.config.update(args)
# wandb.watch(model, log="all")
# Load data
# Normal partition
# trainset, testset, num_examples = utils.load_isic_data()
# trainset, testset, num_examples = utils.load_partition(trainset, testset, num_examples, idx=args.partition, num_partitions=args.num_partitions)
# Exp 1
# trainset, testset, num_examples = utils.load_exp1_partition(trainset, testset, num_examples, idx=args.partition)
# Exp 2/3
train_df, validation_df, num_examples = utils.load_isic_by_patient(args.partition, args.path)
trainset = utils.CustomDataset(df = train_df, train = True, transforms = training_transforms)
valset = utils.CustomDataset(df = validation_df, train = True, transforms = testing_transforms )
testset = utils.load_isic_by_patient(-1, args.path)
print(f"Train dataset: {len(trainset)}, Val dataset: {len(valset)}, Test dataset: {len(testset)}")
train_loader = DataLoader(trainset, batch_size=32, num_workers=4, worker_init_fn=utils.seed_worker, shuffle=True)
val_loader = DataLoader(valset, batch_size=16, num_workers=4, worker_init_fn=utils.seed_worker, shuffle = False)
test_loader = DataLoader(testset, batch_size=16, num_workers=4, worker_init_fn=utils.seed_worker, shuffle = False)
# Start client
client = Client(model, train_loader, val_loader, test_loader, num_examples)
fl.client.start_numpy_client("0.0.0.0:8080", client)