diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index fede760..52ad7e1 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -11,23 +11,14 @@ jobs: strategy: matrix: os: [ubuntu-latest, macos-latest, windows-latest] - python-version: [3.7, 3.9, '3.10'] + python-version: ["3.10", "3.11"] runs-on: ${{ matrix.os }} steps: - uses: actions/checkout@v2 - - name: Cache conda - uses: actions/cache@v1 - env: - # Increase this value to reset cache if etc/example-environment.yml has not changed - CACHE_NUMBER: 0 - with: - path: ~/conda_pkgs_dir - key: - ${{ runner.os }}-conda-${{ env.CACHE_NUMBER }}-${{ - hashFiles('.ci_support/environment.yml') }} - uses: conda-incubator/setup-miniconda@v2 with: + miniforge-variant: Mambaforge activate-environment: mamonca-test channel-priority: strict environment-file: .ci_support/environment.yml diff --git a/README.md b/README.md index f244ec5..2fdadb4 100644 --- a/README.md +++ b/README.md @@ -55,6 +55,11 @@ More complete list of examples can be found in `notebooks/first_steps.ipynb` As a rule of thumb, you can set all input parameters via functions starting with `set_`. Similarly, output values can be obtained via functions whose names start with `get_`. Most notably, you can get all basic output values via `get_output()` in a dictionary. Otherwise, take a look at the list of auto-complete and see their docstrings +## Dependencies + +- Cython +- numpy + ## Notes - Currently only Linux installation is supported diff --git a/mamonca/cMC.cpp b/mamonca/cMC.cpp index 888c86f..4acc094 100644 --- a/mamonca/cMC.cpp +++ b/mamonca/cMC.cpp @@ -1,5 +1,6 @@ #include "cMC.h" +// Random number generator for the Monte Carlo moves double RandomNumberFactory::uniform(bool symmetric, double max_value){ if (symmetric) return max_value*(1.0-2.0*((double)rand()/(double)RAND_MAX)); @@ -7,29 +8,37 @@ double RandomNumberFactory::uniform(bool symmetric, double max_value){ return max_value*((double)rand()/(double)RAND_MAX); } +// Vector of random numbers of length `size` +// whose magnitude is given between -1 and 1 valarray RandomNumberFactory::on_sphere(int size){ for(int i=0; i RandomNumberFactory::n_on_sphere(int size){ return normal()*on_sphere(size); } +// Norm of a vector double m_norm(valarray mm){ return sqrt((mm*mm).sum()); } +// Cross product of two vectors valarray m_cross(valarray& m_one, valarray m_two){ return m_one.cshift(1)*m_two.cshift(2)-m_one.cshift(2)*m_two.cshift(1); } +// Power function to accelerate calculations double power(double x, int exponent){ switch(exponent){ case 1: @@ -49,6 +58,12 @@ double power(double x, int exponent){ } } +// +// Depending on the usage, a magnitude dependent term can be defined and +// implemented here, in which case the value itself and the gradient must +// be defined +// + double Magnitude::value(double xxx){return 0;} double Square::value(double xxx){ return xxx*xxx; } double Quartic::value(double xxx){ return square.value(xxx)*square.value(xxx); } @@ -80,6 +95,12 @@ valarray Decic::gradient(valarray &m){ return 10.*m.apply([](double x){return x*x*x*x*x*x*x*x;}).sum()*m; } +// +// Just like for magnitude, pairwise interactions can be defined here +// if some expert users wish to defined their own Hamiltonian, in which +// case the value itself and the magnitude must be defined +// + double Product::value(Atom &neigh, Atom &me){ return 0.; } @@ -143,6 +164,7 @@ Atom::Atom() : mabs(1), mmax(100), acc(0), count(0), debug(false) update_flag(false); } +// Check if the energy values are up to date void Atom::update_flag(bool ff){ up_to_date.E.assign(2, ff); up_to_date.dE.assign(2, ff); @@ -202,11 +224,13 @@ void Atom::set_m(valarray m_new, bool diff){ update_flag(false); mabs_tmp = mabs; m_tmp = m; - if(diff && abs(dm-1)+abs(dphi-1)==0) - m += m_new; - else if(diff){ - m += dphi*m_new; - m *= m_norm(m_tmp+dm*m_new)/sqrt((m*m).sum()); + if(diff){ + if(abs(dm-1)+abs(dphi-1)==0) + m += m_new; + else{ + m += dphi*m_new; + m *= m_norm(m_tmp+dm*m_new)/sqrt((m*m).sum()); + } } else{ m = m_new; @@ -219,7 +243,8 @@ void Atom::set_m(valarray m_new, bool diff){ void Atom::check_consistency() { if ( abs(sqrt((m*m).sum())-abs(mabs))>1.0e-8 ) throw invalid_argument( - "mabs: "+to_string(sqrt((m*m).sum()))+" vs. "+to_string(abs(mabs))); + "mabs: "+to_string(sqrt((m*m).sum()))+" vs. "+to_string(abs(mabs)) + ); } void Atom::revoke(){ @@ -408,6 +433,7 @@ double average_energy::E_var(int index=0){ void average_energy::reset() { + // Clear statistics EE.assign(2, 0); E_sum.assign(2, 0); EE_sq.assign(2, 0); @@ -500,15 +526,13 @@ bool cMC::thermodynamic_integration(){ return false; } -void cMC::run_spin_dynamics(double kBT, int threads){ - double mu_s = sqrt(2*constants.damping_parameter*constants.hbar*kBT/constants.delta_t); - { - for (int i=0; i dEE_tot; auto begin = std::chrono::high_resolution_clock::now(); @@ -622,8 +651,9 @@ void cMC::run(double T_in, int number_of_iterations, int threads){ } for(int iter=0; iter cMC::get_magnetic_moments(){ vector m(n_tot*3); for(int i_atom=0; i_atom cMC::get_magnetic_moments(){ return m; } +// Used only for external tools vector cMC::get_magnetic_gradients(){ vector m(n_tot*3); valarray grad(3); @@ -659,8 +692,10 @@ vector cMC::get_magnetic_gradients(){ return m; } +// Set the initial magnetic moments void cMC::set_magnetic_moments(vector m_in) { + // Check whether there are 3 * n_atoms entries if(int(m_in.size())!=3*n_tot) throw invalid_argument("Length of magnetic moments not correct"); for(int i_atom=0; i_atom m_in) reset(); } +// Used only for external tools double cMC::get_mean_energy(int index){ return E_tot.E_mean(index); } +// Used only for external tools double cMC::get_energy_variance(int index){ return E_tot.E_var(index); } +// Used only for external tools double cMC::get_acceptance_ratio(){ if(MC_count==0) return 0; return acc/(double)MC_count; } +// Used only for external tools vector cMC::get_acceptance_ratios(){ vector v(n_tot); for(int i=0; i cMC::get_acceptance_ratios(){ void cMC::set_magnitude(vector dm, vector dphi, vector flip) { + // Check whether magnitude is defined for all atoms if(int(dm.size())!=int(dphi.size()) || n_tot!=int(dm.size())) throw invalid_argument("Length of vectors not consistent"); for(int i=0; i cMC::get_magnetization(){ return magnetization_hist; } @@ -740,6 +791,7 @@ vector cMC::get_histogram(int derivative){ void cMC::reset() { + // Reset statistics acc = 0; MC_count = 0; E_tot.reset(); @@ -786,11 +838,15 @@ void Metadynamics::set_metadynamics( denominator = length_scale_in*length_scale_in*2; hist.assign(bins, 0); cutoff = cutoff_in*length_scale_in; + // Whether to use the derivative of the free energy surface to avoid discontinuity + // between bins. From the computational point of view, it makes little sense to + // not use derivative use_derivative = false; if (derivative != 0) use_derivative = true; } +// Give the gradient at the given magnetic moment. Only used for external tools double Metadynamics::get_biased_gradient(double m){ if (!initialized) throw invalid_argument("metadynamics not initialized yet"); @@ -802,6 +858,7 @@ double Metadynamics::get_biased_gradient(double m){ return hist.at(int(m*0.5/mass)); } +// Give the energy value at the given magnetic moment. Only used for external tools double Metadynamics::get_biased_energy(double m_new, double m_tmp){ if (!initialized) throw invalid_argument("metadynamics not initialized yet"); @@ -840,14 +897,19 @@ vector Metadynamics::get_histogram(vector& magnetization, int de if (derivative!=0 && !use_derivative) throw invalid_argument("derivative can be taken only if use_derivative is activated"); vector m_range(hist.size()); + // First n values are the positions of the magnetic moments for (int i=0; i h_tmp (hist.size(), 0); + // If the user wishes, they can also get the free energy values, which are not + // stored in mamonca, so they must be calculated here. for (auto m: magnetization) for (int i=i_min(m); i distribution; valarray m_new; public: - valarray on_sphere(int size=3); // size + valarray on_sphere(int size=3); double uniform(bool symmetric=true, double max_value=1.0); double normal(); - valarray n_on_sphere(int size=3); //size + valarray n_on_sphere(int size=3); RandomNumberFactory(){ m_new.resize(3, 0); } } rand_generator; struct Constants{ - const double hbar = 0.6582119569; - const double kB = 8.617333262145e-5; + const double hbar = 0.6582119569; // eV * fs + const double kB = 8.617333262145e-5; // eV / K double damping_parameter = 8.0e-3; - double delta_t = 1.0e-3; + double delta_t = 1.0e-3; // fs } constants; struct Product; @@ -134,7 +134,7 @@ class cMC{ average_energy E_tot; bool thermodynamic_integration(); void run_mc(double); - void run_spin_dynamics(double, int); + void run_spin_dynamics(double); bool metropolis(double, double); vector selectable_id; valarray magnetization; @@ -147,7 +147,7 @@ class cMC{ ~cMC(); void create_atoms(int); void activate_debug(); - void run(double, int number_of_iterations=1, int threads=1); + void run(double, int number_of_iterations=1); void set_lambda(double); vector get_magnetic_moments(); vector get_magnetic_gradients(); @@ -178,6 +178,9 @@ class cMC{ vector get_histogram(int); }; +// +// On-site longitudinal component. Value and gradient must be defined +// struct Magnitude{ virtual double value(double); virtual valarray gradient(valarray&); @@ -208,6 +211,10 @@ struct Decic : Magnitude { valarray gradient(valarray&); } decic; +// +// Pairwise interactions. Just like for Magnitude, +// value and gradient must be defined +// struct Product{ virtual double value(Atom&, Atom&); virtual double diff(Atom&, Atom&); diff --git a/mamonca/cMC.pxd b/mamonca/cMC.pxd index 780c0ea..c097bfe 100644 --- a/mamonca/cMC.pxd +++ b/mamonca/cMC.pxd @@ -11,7 +11,7 @@ cdef extern from "cMC.h": void set_heisenberg_coeff(vector[double], vector[int], vector[int], int, int) except + void clear_landau_coeff(int) except + void clear_heisenberg_coeff(int) except + - void run(double, int, int) except + + void run(double, int) except + void activate_debug() vector[double] get_magnetic_moments() vector[double] get_magnetic_gradients() diff --git a/mamonca/mc.pyx b/mamonca/mc.pyx index 23431eb..5c2a018 100644 --- a/mamonca/mc.pyx +++ b/mamonca/mc.pyx @@ -192,7 +192,7 @@ cdef class MC: 'steps_per_second': self.get_steps_per_second()} - def run(self, temperature, number_of_iterations=1, reset=True, threads=1): + def run(self, temperature, number_of_iterations=1, reset=True): """ Args: temperature (float): Temperature in K @@ -202,7 +202,7 @@ cdef class MC: """ if reset: self.c_mc.reset() - self.c_mc.run(temperature, number_of_iterations, threads) + self.c_mc.run(temperature, number_of_iterations) def get_acceptance_ratio(self, individual=False): """ diff --git a/notebooks/first_steps.ipynb b/notebooks/first_steps.ipynb index c05d0b4..64e2100 100644 --- a/notebooks/first_steps.ipynb +++ b/notebooks/first_steps.ipynb @@ -25,6 +25,8 @@ "source": [ "from mamonca import MC\n", "import numpy as np\n", + "\n", + "from tqdm.auto import tqdm\n", "import matplotlib.pylab as plt" ] }, @@ -33,74 +35,235 @@ "execution_count": 2, "id": "a175712e", "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_atomistics.atomistics.structure.factory import StructureFactory" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8e508b81", + "metadata": {}, + "outputs": [], + "source": [ + "# Create bcc structure (which is the ground state of iron)\n", + "bcc = StructureFactory().bulk(\"Fe\", cubic=True).repeat(10)\n", + "\n", + "neigh = bcc.get_neighbors(num_neighbors=8)" + ] + }, + { + "cell_type": "markdown", + "id": "19d1f767-0aea-41d0-ab77-4388b8c9a575", + "metadata": {}, + "source": [ + "### Monte Carlo" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9eb9e964-4b50-4a46-b8c9-b25f59f3c0be", + "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e11d4810f88740d493d345138f54fad7", + "model_id": "4b0c343da34b404989f09cf8db1051e9", "version_major": 2, "version_minor": 0 }, - "text/plain": [] + "text/plain": [ + " 0%| | 0/16 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.xlabel(\"Temperature K\")\n", + "plt.ylabel(\"Magnetization\")\n", + "plt.ylim([0, 1])\n", + "plt.grid()\n", + "plt.plot(T_lst, m_mc_lst, label=\"Monte Carlo\")\n", + "plt.plot(T_lst, m_sd_lst, label=\"Spin dynamics\")\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "38c184fb", + "metadata": {}, + "source": [ + "Here, as we chose the Heisenberg parameter randomly, the Curie temperature is somewhat higher than the experimental value of 1,043 K. In addition, since the system is relatively small, the total magnetization after the transition does not completely vanish. The residual magnetization values above the Curie temperature can therefore vary each time you run the simulation. The unit if the magnetization is given by the Heisenberg parameter. You can see that Monte Carlo and spin dynamics are (not so surprisingly) comparable." + ] + }, + { + "cell_type": "markdown", + "id": "68e1ce81-e718-456b-a1dd-2f9c3c709fa1", + "metadata": {}, + "source": [ + "## Reproduce literature values\n", + "\n", + "Here I do a small comparison between mamonca and the results given [in this paper](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.024421). The paper is about Fe-Mn, but for the sake of simplicity, I reproduce the results only for Fe" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "1a31f058-a750-4d7a-8d4d-ad3061bf6406", + "metadata": {}, + "outputs": [], + "source": [ + "# Create bcc structure (which is the ground state of iron)\n", + "bcc = StructureFactory().bulk(\"Fe\", cubic=True).repeat(20)\n", + "\n", + "neigh = bcc.get_neighbors(num_neighbors=80)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "2ed26f5d-c6ee-48d3-b37d-0daba5e3912f", + "metadata": {}, + "outputs": [], + "source": [ + "J_lst = np.array([3.39, 2.26, 0.83, 0.42, 0.44]) / 1000\n", + "A = -0.259\n", + "B = 0.0276" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6d446af4-3b94-4749-80fc-070baf05eefd", "metadata": {}, "outputs": [ { "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5e70717fe59d454f8a01b357bbf8f3a7", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "[]" + " 0%| | 0/16 [00:00" ] @@ -110,18 +273,20 @@ } ], "source": [ - "plt.xlabel(\"Temperature K\")\n", + "plt.plot(*data.T, label=\"reference\")\n", "plt.ylabel(\"Magnetization\")\n", - "plt.ylim([0, 1])\n", - "plt.plot(T_lst, m_lst)" + "plt.xlabel(\"Temperature K\")\n", + "plt.grid()\n", + "plt.plot(T_lst, m_lst / m_lst[0], label=\"mamonca\")\n", + "plt.legend();" ] }, { "cell_type": "markdown", - "id": "38c184fb", + "id": "0568b0b5-4c0b-4840-84ea-22eb352835ce", "metadata": {}, "source": [ - "Here, as we chose the Heisenberg parameter randomly, the Curie temperature is somewhat higher than the experimental value of 1,043 K. In addition, since the system is relatively small, the total magnetization after the transition does not completely vanish. The residual magnetization values above the Curie temperature can therefore vary each time you run the simulation. The unit if the magnetization is given by the Heisenberg parameter." + "We can see that there's a small difference between mamonca and the reference values. The reason is probably because the values in the paper are truncated at 0.01 meV for all J values and , which can have quite some effects on the final results." ] }, { @@ -142,7 +307,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 12, "id": "110b315b", "metadata": {}, "outputs": [], @@ -159,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 13, "id": "7f61d836", "metadata": {}, "outputs": [], @@ -170,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 14, "id": "a04adf31", "metadata": {}, "outputs": [], @@ -182,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 15, "id": "55a4c4a7", "metadata": {}, "outputs": [], @@ -193,7 +358,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 16, "id": "12103d66", "metadata": {}, "outputs": [], @@ -212,13 +377,13 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 17, "id": "d8f7f333", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBSElEQVR4nO3deXyU5b3///c9M9lJJqxhCxCUsMhqKAIefq5ExUJttaCcinq0yqkWkNYqpe4eo7VS64LaurYiIrgcv6dUjVUBF1QwYBUECkiCJMSgmWxkmZn790cyY0ISmCEzc2cyr+fjMY9krlz35DO34Ly5ruu+L8M0TVMAAAAxymZ1AQAAAFYiDAEAgJhGGAIAADGNMAQAAGIaYQgAAMQ0whAAAIhphCEAABDTHFYX0Nl5vV4dOHBAqampMgzD6nIAAEAATNNUZWWl+vfvL5vt6GM/hKFjOHDggDIzM60uAwAAHIeioiINHDjwqH0IQ8eQmpoqqfFkpqWlWVwNAAAIREVFhTIzM/2f40dDGDoG39RYWloaYQgAgCgTyBIXFlADAICYRhgCAAAxjTAEAABiGmEIAADENMIQAACIaYQhAAAQ0whDAAAgphGGAABATCMMAQCAmEYYAgAAMY0wBAAAYhphCAAAxDQ2arVITb1bh6rq5bAbshuG7LY2Hk3tgWwyBwAAjg9hyCLrdnyj/17xaUB9bYbksNlkszV9NSSH3SabYchxlBDVVrvDbviPs9naOL6dPv6+hiG7zSaH3VCc3ZCj6fvvvxpy2G2Ka/ra+Lzlz+Pszfr6X8smu81QXNNzu+37NgAAwokwZKHEOJu8Xsnt9cprtt/Pa0r1Hq/kkSRvpMrrFAxDirM1hqKWoakpbDULVXH2xrbGINUUtJodF++wKf6Ir772hGbfx9ttimv62qLdf5yheLu96Xijxc8YxQOA6EMYssh5Y/rpvDH9/M9N05THa8rj+3rkwzTl9pjymqbcXlNeb+PX5j9v67jWfbzyeHXE16bXPOK1/b/DNOXxfP873F5Tbo9Xbk/T916vGjxNbV6zqf377xua2j3epu/b+LnvdY9kNg+CDRH8D3Sc4uxGq6B1ZAhrr/3IYxIcNiXH25Ucb1dSvEPJcb7v7UqOdygpzve9XUlxdtkYRQOA40IY6iSMpumpWP4PYppmyzDlMdXQ9NUfpJr93BfAPF5TDd7WYazB0xj+GpoCV73b6/9ad8Tzxu9N1bm9qvd41dD09fufeb//WbP2IwNc4+/yqLreE/Hzlxhn84ek70NUG8Ep3q7kOEeznzcLXE3Byt8e51BSfOMoGAB0VbH82YtOxjAap7fi7JJkt7qcgHi9ZmNoaiNc1R8RtOo9nsYg5nvu9qre7Wn6ma/9+2NqGzyqafDocL1HNfXupq8eHfa3NX7vU9vgVW1DfVjep8NmNAtOrUelfGEqNdEhZ1KcuifHKz05rvGRFK/uKY1fk+Kj478rgNhCGAI6wGYzlGizKzHOmg95r9dUrbspGDUFpObBqabBo9qmtpqG5n08Olzv9geq5m2+54frPf6RL7fXVGWtW5W1bkl1x11vgsOm9OTGsNQyNMU3tcfJmRSv7k1t3ZPj5EyOU4KDEAUgfAhDQBSz2QwlxzuUHB+ev8r1bm9jgGpwtxu4mo9UVdY2qPxwg8pr6lVe06DvaurlOtyg8poGub2N05AHK+p0sCK4QJUcb1d6UvPQFC9nU3hKT/o+UHX3jUY1ha04O9N7AI6NMASgXb7F3E7Fdeh1TNNUVZ1b5TWNwaj8cL2+q2mQq6bxa2N7vcoPNwWoZkHKa8o/cnXAVRvU701NcDSFpmYjUElNI1BN4al3aoKyM1LVJzWBqwGBGEUYAhB2hmEoNTFOqYlxyuwR+HHepuk5X3jyjTiVN4UoV1N4ah6mypvaJamyzq3KOrf2f3f4mL8rPTlO2RmpGp6Rquy+jV+HZ6TKmdyxIAig8zNM0zzKHW5QUVEhp9Mpl8ultLQ0q8sBEACP11SFLyi1mLZrNhrV1P71d4f11aHqdu/1lZGW0CokDcvoFrapSQChEcznN3+bAXQ5dpuh7inx6p4SH1D/2gaPdn9TpZ0HK7WjxPe1Ul+XH/avcdqwq8zf3zCkQT2SW4WkrF4p3IYAiEKMDB0DI0NA7KqsbdCu0irtKGkMRzsPNj7Kqtq+hYHDZmho75QWIWlE31Rldk/mpphAhAXz+U0YOgbCEIAjlVXVNQajkkrtOFjl/76yzt1m/8Q4m7IzUluNJGWksWgbCBfCUAgRhgAEwjRNFbtqtcMXkkoqteNgpXaVVqne3faegmmJDg3v2xSS+n4flgKd3gPQPsJQCBGGAHSEx2tq36HqluuRDlZqb1m1PO2s2u6TmtAiHGX3TdWwPt2UksAyTyBQhKEQIgwBCIc6t0d7vmkMSV+W+KbcKo96G4DMHkkanpGqkwd313+dmmXZnc+BaEAYCiHCEIBIqqpza1fTQu3mI0nfVLa8a/cZw3vrsUtz2KoEaEcwn99RdQ3o+vXrNXPmTPXv31+GYejVV189av+XX35Z06dPV+/evZWWlqYpU6bojTfeiEyxAHAcuiU4NGFQd835wSDdMnOUnrvqFH2y9Gx9evN0vXD1ZP3u/JFKjLPpnR3f6BfPfao6t+fYLwrgqKIqDFVXV2vcuHF6+OGHA+q/fv16TZ8+XWvXrtXmzZt1xhlnaObMmSooKAhzpQAQWj1S4jV5aE9dNW2onrzsB0pw2PTPL0t17YqCdhdoAwhM1E6TGYahV155RRdccEFQx5100kmaM2eObrnlloD6M00GoDPasOsbXfnsJtW7vTrnpAw9PPdkNqYFmumy02Qd5fV6VVlZqR492t8cqa6uThUVFS0eANDZTBvWW3+ZN1HxDpve+OKgFqwsUIOHESLgeMRUGLr//vtVXV2t2bNnt9snLy9PTqfT/8jMzIxghQAQuNOye+vxS3MUb7fpH5+XaNELW+QmEAFBi5kwtHLlSt12221atWqV+vTp026/JUuWyOVy+R9FRUURrBIAgnPG8D567NKTFWc39Pd/FWvRKgIREKyYCEOrVq3SlVdeqRdffFFnn332UfsmJCQoLS2txQMAOrMzR2To0f/MUZzd0P99Vqxfrd7a7g0dAbTW5cPQypUrdfnll+v555/X+eefb3U5ABAWZ4/K0CNzT5bDZuh/txzQrwlEQMCiKgxVVVVpy5Yt2rJliyRp79692rJliwoLCyU1TnHNmzfP33/lypWaN2+e7r//fk2ePFklJSUqKSmRy+WyonwACKvck/rq4aZA9ErB17phDYEICERUhaFNmzZpwoQJmjBhgiRp8eLFmjBhgv8y+eLiYn8wkqTHH39cbrdb1157rfr16+d/LFy40JL6ASDczh3dVw9dMkF2m6GXP/1aN770mbwEIuCoovY+Q5HCfYYARKP/++yAFr6wRR6vqTkTM5X3kzGy2QyrywIihvsMAUCM++HY/vrjnPGyGdKqTUVa+uq/GCEC2kEYAoAuata47wPRyo+LdPP/fi4mA4DWCEMA0IX9aPwA3T97nAxDWvFRoW753y8IRMARCEMA0MX9eMJA3XdRYyD628Z9uu01AhHQHGEIAGLARTkDde+FY2UY0rMf7tMd/7eNQAQ0IQwBQIyYPTFT9/xkjCTp6fe/0l1/304gAkQYAoCYMucHg3T3jxsD0ZPv7VXeP74kECHmEYYAIMbMPWWQ7rpgtCTpz+v36N7XdxCIENMIQwAQg342ebDu/NFJkqTH1u3WfW8QiBC7CEMAEKMunTJEt89qDETL392tZfk7CUSISYQhAIhhl00dolt+OEqS9NDb/9YDb+2yuCIg8ghDABDj/us/svS780dKkv70z136E4EIMYYwBADQVdOG6rczRkiS/vjWTj38NoEIsYMwBACQJF39/52gG89tDER/eHOnlr/7b4srAiKDMAQA8Pvv00/QDecMlyT9/vUdemzdbosrAsKPMAQAaOHaM07Ur6ZnS5Lu+ceX+sv6PRZXBIQXYQgA0MovzxqmRWcPkyT9z9rtemIDgQhdF2EIANCmRWdna8FZjYHorr9v19Pv77W4IiA8CEMAgHZdf/YwXXfGiZKk2//fNj37wVfWFgSEAWEIANAuwzD0q9xs/ffpJ0iSbn3tC/1t4z6LqwJCizAEADgqwzD0m3OG65rThkqSbn71c634iECEroMwBAA4JsMwdNO5I/TzaVmSpKWvfK6VHxdaXBUQGoQhAEBADMPQb2eM1H+d2hiIlrz8L734SZHFVQEdRxgCAATMMAzd/MORunzqEEnSjS9/pjWb91tbFNBBhCEAQFAMw9CtM0fpsimDZZrSDWu26uVPCUSIXoQhAEDQDMPQbbNO0s8mD5JpSr9avVWvFnxtdVnAcSEMAQCOi2EYumPWaM09pTEQLX5xi/53C4EI0YcwBAA4bjabobt+NFoX/yBTXlO6ftUW/b+tB6wuCwgKYQgA0CE2m6G7fzxGsycOlNeUFq3aor9/Vmx1WUDACEMAgA6z2Qzd85OxuihnoDxeUwteKNDrnxOIEB0IQwCAkLDZDN174Vj9ZMIAebymrnu+QG98UWJ1WcAxEYYAACFjtxm676fjdMH4/nJ7TV274lPlbztodVnAURGGAAAhZbcZ+sNPx2nWuMZA9IsVm/XP7QQidF6EIQBAyDnsNi2bPU4/HNtPDR5T//3cp9peXGF1WUCbCEMAgLBw2G16YM54TR7aQ/UeL6ND6LQIQwCAsHHYbTp9eB9J0o6DVRZXA7QtqsLQ+vXrNXPmTPXv31+GYejVV1895jHr1q1TTk6OEhMTNXToUD322GPhLxQA4Dc8I1WStKOEaTJ0TlEVhqqrqzVu3Dg9/PDDAfXfu3evZsyYoWnTpqmgoEC//e1vtWDBAr300kthrhQA4DO8b2MY2vNNterdXourAVpzWF1AMM477zydd955Afd/7LHHNGjQID3wwAOSpJEjR2rTpk36wx/+oAsvvDBMVQIAmuvnTFRqokOVtW7tKavSiL5pVpcEtBBVI0PB+vDDD5Wbm9ui7ZxzztGmTZvU0NDQ5jF1dXWqqKho8QAAHD/DMJpNlVVaXA3QWpcOQyUlJcrIyGjRlpGRIbfbrbKysjaPycvLk9Pp9D8yMzMjUSoAdGnZTVNlOw8ShtD5dOkwJDX+i6Q50zTbbPdZsmSJXC6X/1FUVBT2GgGgq2NkCJ1ZVK0ZClbfvn1VUtJyX5zS0lI5HA717NmzzWMSEhKUkJAQifIAIGb4FlHvYGQInVCXHhmaMmWK8vPzW7S9+eabmjhxouLi4iyqCgBij29kqOjbw6qqc1tcDdBSVIWhqqoqbdmyRVu2bJHUeOn8li1bVFhYKKlximvevHn+/vPnz9e+ffu0ePFibd++XU899ZSefPJJ/frXv7aifACIWd1T4tUntXHUfRejQ+hkoioMbdq0SRMmTNCECRMkSYsXL9aECRN0yy23SJKKi4v9wUiSsrKytHbtWr377rsaP3687rzzTj344INcVg8AFhjOImp0UlG1Zuj000/3L4BuyzPPPNOq7bTTTtOnn34axqoAAIHIzkjVhl1l+pJF1OhkompkCAAQvRgZQmdFGAIARMT3l9ezYSs6F8IQACAihmV0k2FIZVV1OlRVZ3U5gB9hCAAQEcnxDg3qkSyJ+w2hcyEMAQAiJps7UaMTIgwBACJmBIuo0QkRhgAAEcPIEDojwhAAIGK+v7y+6qj3jQMiiTAEAIiYrF4pirMbqqpz6+vyw1aXA0giDAEAIijObtMJvbtJYqoMnQdhCAAQUf51QyyiRidBGAIARJR/3RAjQ+gkCEMAgIjybcvBhq3oLAhDAICI8o0M7fmmWg0er8XVAIQhAECEDUhPUkq8XfUer/Ydqra6HIAwBACILJvN0DCmytCJEIYAABE3gkXU6EQIQwCAiMtmZAidCGEIABBxw9mwFZ0IYQgAEHG+MLTv2xodrvdYXA1iHWEIABBxvbolqGdKvExT2lXK6BCsRRgCAFjCNzrEHmWwGmEIAGAJ/x5lhCFYjDAEALCEf2SIRdSwGGEIAGAJrihDZ0EYAgBYwjdNdrCiTuU19RZXg1hGGAIAWKJbgkMDuydJYt0QrEUYAgBYZngGU2WwHmEIAGCZ7L5sywHrEYYAAJYZwSJqdAKEIQCAZZpv2GqapsXVIFYRhgAAlhnaO0V2m6HKWrdKKmqtLgcxijAEALBMgsOuob1SJHFFGaxDGAIAWCqbPcpgMcIQAMBSIzLYlgPWIgwBACzFyBCsRhgCAFjKd+PFXaVV8ni5ogyRF3VhaPny5crKylJiYqJycnK0YcOGo/ZfsWKFxo0bp+TkZPXr109XXHGFDh06FKFqAQDHMqhHshLjbKp3e7XvULXV5SAGRVUYWrVqlRYtWqSlS5eqoKBA06ZN03nnnafCwsI2+7/33nuaN2+errzySn3xxRdavXq1PvnkE1111VURrhwA0B6bzfDfb4ipMlghqsLQsmXLdOWVV+qqq67SyJEj9cADDygzM1OPPvpom/03btyoIUOGaMGCBcrKytJ//Md/6JprrtGmTZva/R11dXWqqKho8QAAhFc2i6hhoagJQ/X19dq8ebNyc3NbtOfm5uqDDz5o85ipU6dq//79Wrt2rUzT1MGDB7VmzRqdf/757f6evLw8OZ1O/yMzMzOk7wMA0BrbcsBKUROGysrK5PF4lJGR0aI9IyNDJSUlbR4zdepUrVixQnPmzFF8fLz69u2r9PR0PfTQQ+3+niVLlsjlcvkfRUVFIX0fAIDWmm/LAURa1IQhH8MwWjw3TbNVm8+2bdu0YMEC3XLLLdq8ebNef/117d27V/Pnz2/39RMSEpSWltbiAQAIL9/I0Fdl1apt8FhcDWKNw+oCAtWrVy/Z7fZWo0ClpaWtRot88vLydOqpp+qGG26QJI0dO1YpKSmaNm2a7rrrLvXr1y/sdQMAjq13aoLSk+NUXtOgf5dWafQAp9UlIYZEzchQfHy8cnJylJ+f36I9Pz9fU6dObfOYmpoa2Wwt36LdbpckdkcGgE7EML6/oox1Q4i0qAlDkrR48WI98cQTeuqpp7R9+3Zdf/31Kiws9E97LVmyRPPmzfP3nzlzpl5++WU9+uij2rNnj95//30tWLBAkyZNUv/+/a16GwCANvimyriiDJEWNdNkkjRnzhwdOnRId9xxh4qLizV69GitXbtWgwcPliQVFxe3uOfQ5ZdfrsrKSj388MP61a9+pfT0dJ155pm69957rXoLAIB2cK8hWMUwmS86qoqKCjmdTrlcLhZTA0AYbfrqW1302Ifq70zUB0vOsrocRLlgPr+japoMANB1DWsaGTrgqpXrcIPF1SCWEIYAAJ2CMylO/ZyJkqRdrBtCBBGGAACdxnAWUcMChCEAQKcxnEXUsEDQYejpp5/W6tWrW7WvXr1azz77bEiKAgDEJq4ogxWCDkP33HOPevXq1aq9T58+uvvuu0NSFAAgNg1vtmErFzsjUoIOQ/v27VNWVlar9sGDB7e4xw8AAME6sU832Qzpu5oGfVNZZ3U5iBFBh6E+ffros88+a9W+detW9ezZMyRFAQBiU2KcXUN6pUhiETUiJ+gwdPHFF2vBggV655135PF45PF49Pbbb2vhwoW6+OKLw1EjACCGsIgakRb0dhx33XWX9u3bp7POOksOR+PhXq9X8+bNY80QAKDDsjNS9Y/PSwhDiJigw1B8fLxWrVqlu+66S1u2bFFSUpLGjBnj3x8MAICOGNGX3esRWce9UeuwYcM0bNiwUNYCAICy/WGoSl6vKZvNsLgidHVBrxm66KKLdM8997Rqv++++/TTn/40JEUBAGLX4B7JinfYdLjBo6LvaqwuBzEg6DC0bt06nX/++a3azz33XK1fvz4kRQEAYpfDbtOwPt0ksYgakRF0GKqqqlJ8fHyr9ri4OFVUVISkKABAbOOKMkRS0GFo9OjRWrVqVav2F154QaNGjQpJUQCA2MaGrYikoBdQ33zzzbrwwgu1e/dunXnmmZKkf/7zn1q5cmWbe5YBABAs3yJqRoYQCUGHoVmzZunVV1/V3XffrTVr1igpKUljx47VW2+9pdNOOy0cNQIAYoxvmmxvWbXq3B4lOOwWV4SuLKAw9OCDD+rqq69WYmKiCgsLNWPGjDYXUQMAEAr9nIlKTXSostatvWXVGtE3zeqS0IUFtGZo8eLF/sXRWVlZ+uabb8JaFAAgthmGwSJqRExAI0P9+/fXSy+9pBkzZsg0Te3fv1+1tbVt9h00aFBICwQAxKbhfVO1ad93hCGEXUBh6He/+51++ctf6rrrrpNhGPrBD37Qqo9pmjIMQx6PJ+RFAgBiz3AWUSNCAgpDV199tS655BLt27fPv1i6Z8+e4a4NABDDsjO4vB6REfDVZKmpqRo9erSefvppnXrqqUpISDhq/5UrV2rWrFlKSUnpcJEAgNjjWzO0/7vDqqpzq1vCcW+nCRxV0DddvOyyy44ZhCTpmmuu0cGDB4+rKAAAuqfEq09q4+cNO9gjnIIOQ4EyTTNcLw0AiBG+dUM7WTeEMApbGAIAoKOGs24IEUAYAgB0WmzLgUggDAEAOq0RvmkyRoYQRoQhAECndWKfbjIMqayqXmVVdVaXgy4qbGFo8ODBiouLC9fLAwBiQHK8Q4N6JEtiETXCJ+Aw9PHHH7e4u/SRV4vV1dXpxRdf9D///PPPlZmZGYISAQCxjEXUCLeAw9CUKVN06NAh/3On06k9e/b4n5eXl+uSSy4JbXUAgJjHthwIt4DD0JEjQW3dR4h7CwEAQo1tORBuIV0zZBhGKF8OAIDvrygrqZTXyz+6EXpcTQYA6NSG9EpRnN1Qdb1HX5cftrocdEFBhaFt27bps88+02effSbTNPXll1/6n3/xxRfhqrGF5cuXKysrS4mJicrJydGGDRuO2r+urk5Lly7V4MGDlZCQoBNOOEFPPfVURGoFAHRcnN2mE3p3k8T9hhAeQW0BfNZZZ7VYF/TDH/5QUuP0mGmaYZ8mW7VqlRYtWqTly5fr1FNP1eOPP67zzjtP27Zt06BBg9o8Zvbs2Tp48KCefPJJnXjiiSotLZXb7Q5rnQCA0BreN1VfllTqy5JKnTUyw+py0MUEHIb27t0bzjoCsmzZMl155ZW66qqrJEkPPPCA3njjDT366KPKy8tr1f/111/XunXrtGfPHvXo0UOSNGTIkEiWDAAIAd8iakaGEA4Bh6HBgweHs45jqq+v1+bNm3XTTTe1aM/NzdUHH3zQ5jGvvfaaJk6cqN///vf629/+ppSUFM2aNUt33nmnkpKS2jymrq5OdXXf3+W0oqIidG8CAHBcRnB5PcIoqGkyK5WVlcnj8Sgjo+XwaEZGhkpKSto8Zs+ePXrvvfeUmJioV155RWVlZfrFL36hb7/9tt11Q3l5ebr99ttDXj8A4Pj5RoZ2f1OlBo9XcXau/0HoRN2fpiPXJR1trZLX65VhGFqxYoUmTZqkGTNmaNmyZXrmmWd0+HDbVyQsWbJELpfL/ygqKgr5ewAABGdg9ySlxNvV4DH1VVm11eWgi4maMNSrVy/Z7fZWo0ClpaWtRot8+vXrpwEDBsjpdPrbRo4cKdM0tX///jaPSUhIUFpaWosHAMBahmEou2mq7EumyhBiUROG4uPjlZOTo/z8/Bbt+fn5mjp1apvHnHrqqTpw4ICqqqr8bTt37pTNZtPAgQPDWi8AILSGs4gaYdKhMHTPPfeovLw8RKUc2+LFi/XEE0/oqaee0vbt23X99dersLBQ8+fPl9Q4xTVv3jx//7lz56pnz5664oortG3bNq1fv1433HCD/uu//qvdBdQAgM6JPcoQLh1aQH333Xdr9uzZSk9PD1E5RzdnzhwdOnRId9xxh4qLizV69GitXbvWf6VbcXGxCgsL/f27deum/Px8/fKXv9TEiRPVs2dPzZ49W3fddVdE6gUAhA671yNcDLMDu6umpqZq69atGjp0aChr6lQqKirkdDrlcrlYPwQAFiqrqtPEu96SYUhf3H6OkuOj5oJoWCCYz++oWTMEAIhtvbolqFe3eJmmtOtg1bEPAALUoTC0bds2y2/GCACIHdlMlSEMOhSGMjMzZbfbQ1ULAABH5VtEvZNF1AghpskAAFGDRdQIB8IQACBqZHN5PcKAMAQAiBq+NUOllXX6rrre4mrQVRCGAABRo1uCQwO7N940l6kyhErQYeiiiy7SPffc06r9vvvu009/+tOQFAUAQHvYlgOhFnQYWrdunc4///xW7eeee67Wr18fkqIAAGjPcDZsRYgFHYaqqqoUHx/fqj0uLk4VFRUhKQoAgPZweT1CLegwNHr0aK1atapV+wsvvKBRo0aFpCgAANrj37D1YKU6sKMU4Bf0xi4333yzLrzwQu3evVtnnnmmJOmf//ynVq5cqdWrV4e8QAAAmhvaq5scNkOVtW4Vu2rVPz3J6pIQ5YIOQ7NmzdKrr76qu+++W2vWrFFSUpLGjh2rt956S6eddlo4agQAwC/eYVNWrxTtKq3SjoOVhCF02HFt+Xv++ee3uYgaAIBIGN43tTEMlVTqjOF9rC4HUS7oNUOffPKJPvroo1btH330kTZt2hSSogAAOBr/5fUsokYIBB2Grr32WhUVFbVq//rrr3XttdeGpCgAAI4muy97lCF0gg5D27Zt08knn9yqfcKECdq2bVtIigIA4GhGNIWhXaVVcnu8FleDaBd0GEpISNDBgwdbtRcXF8vhOK4lSAAABCWze7KS4uyqd3u179saq8tBlAs6DE2fPl1LliyRy+Xyt5WXl+u3v/2tpk+fHtLiAABoi81mKDujmyTWDaHjgg5D999/v4qKijR48GCdccYZOuOMM5SVlaWSkhLdf//94agRAIBWfDvYsy0HOiroea0BAwbos88+04oVK7R161YlJSXpiiuu0CWXXKK4uLhw1AgAQCv+bTlYRI0OOq5FPikpKbr66qtDXQsAAAHzb8vByBA66LjC0I4dO/TQQw9p+/btMgxDI0aM0HXXXacRI0aEuj4AANrku9fQV4eqVdvgUWKc3eKKEK2CXjO0Zs0ajR49Wps3b9a4ceM0duxYffrppxozZgx7kwEAIqZ3aoK6J8fJa0r/Lq2yuhxEsaBHhn7zm99oyZIluuOOO1q033rrrbrxxhv105/+NGTFAQDQHsMwlJ2Rqo/2fqsdJZUaPcBpdUmIUkGPDJWUlGjevHmt2n/2s5+ppKQkJEUBABAIFlEjFIIOQ6effro2bNjQqv29997TtGnTQlIUAACB8IUhLq9HRwQ0Tfbaa6/5v581a5ZuvPFGbd68WZMnT5Ykbdy4UatXr9btt98enioBAGiDf8NWRobQAYZpmuaxOtlsgQ0gGYYhj8fT4aI6k4qKCjmdTrlcLqWlpVldDgCgGdfhBo27/U1J0tZbc+VM4n53aBTM53dAKcfr9Qb06GpBCADQuTmT4tTfmSiJ0SEcv6DXDAVqzJgxKioqCtfLAwAgScrm5ovooLCFoa+++koNDQ3henkAACRxRRk6LmxhCACASBjOhq3oIMIQACCqZTe7oiyAa4KAVghDAICodmKfbrIZUnlNg0or66wuB1GIMAQAiGqJcXYN6ZUiiUXUOD5RF4aWL1+urKwsJSYmKicnp827Ybfl/fffl8Ph0Pjx48NbIAAg4rj5IjoibGHo8ccfV0ZGRkhfc9WqVVq0aJGWLl2qgoICTZs2Teedd54KCwuPepzL5dK8efN01llnhbQeAEDnwLYc6IiAw9CMGTPkcrn8z//nf/5H5eXl/ueHDh3SqFGj/M/nzp2rlJSU0FTZZNmyZbryyit11VVXaeTIkXrggQeUmZmpRx999KjHXXPNNZo7d66mTJkS0noAAJ0DI0PoiIDD0BtvvKG6uu8Xpt1777369ttv/c/dbrd27NgR2uqaqa+v1+bNm5Wbm9uiPTc3Vx988EG7xz399NPavXu3br311oB+T11dnSoqKlo8AACdW/N7DXm8XFGG4AQcho68XDHSly+WlZXJ4/G0mnrLyMhQSUlJm8fs2rVLN910k1asWCGHI6A9aZWXlyen0+l/ZGZmdrh2AEB4De6ZoniHTbUNXhV9W2N1OYgyUbeA2jCMFs9N02zVJkkej0dz587V7bffruzs7IBff8mSJXK5XP4HW4oAQOdntxka1qebJGkHU2UIUmDDJWoMIUeGjrZCSLj06tVLdru91ShQaWlpmwu1KysrtWnTJhUUFOi6666T1LjhrGmacjgcevPNN3XmmWe2Oi4hIUEJCQnheRMAgLAZ3jdVXxyo0I6SSp1zUl+ry0EUCTgMmaapyy+/3B8UamtrNX/+fP8i6ebricIhPj5eOTk5ys/P149//GN/e35+vn70ox+16p+WlqZ//etfLdqWL1+ut99+W2vWrFFWVlZY6wUARJZvETUjQwhWwGHosssua/H8Zz/7Was+8+bN63hFR7F48WJdeumlmjhxoqZMmaI///nPKiws1Pz58yU1TnF9/fXX+utf/yqbzabRo0e3OL5Pnz5KTExs1Q4AiH7+RdRcXo8gBRyGnn766XDWEZA5c+bo0KFDuuOOO1RcXKzRo0dr7dq1Gjx4sCSpuLj4mPccAgB0Tb4wtKesWnVujxIcdosrQrQwTHa1O6qKigo5nU65XC6lpaVZXQ4AoB2maWrs7W+qstatfyycppH9+H92LAvm8zvqriYDAKAthmFoRNPoEHuUIRiEIQBAl5HNImocB8IQAKDLYBE1jgdhCADQZfgur2fDVgSDMAQA6DJ8I0Nflx9WZW2DxdUgWhCGAABdRnpyvDLSGm8OvPNglcXVIFoQhgAAXYpvEfVOFlEjQIQhAECX4t+Wg3VDCBBhCADQpQznXkMIEmEIANCl+C+vZ5oMASIMAQC6lGF9UmUY0qHqepVV1VldDqIAYQgA0KUkxds1uEeyJKbKEBjCEACgy8lmETWCQBgCAHQ5bNiKYBCGAABdTnZfNmxF4AhDAIAux3evoV0HK+X1mhZXg86OMAQA6HKG9EpRvN2m6nqPvi4/bHU56OQIQwCALifObtPQ3imSWDeEYyMMAQC6pBGsG0KACEMAgC4pmyvKECDCEACgSxrO7vUIEGEIANAl+fYo2/1NlRo8XourQWdGGAIAdEkD0pOUEm9Xg8fU3rJqq8tBJ0YYAgB0SYZhsG4IASEMAQC6LLblQCAIQwCALsu/YSuLqHEUhCEAQJc1nJEhBIAwBADosnyX1xd+W6OaerfF1aCzIgwBALqsnt0S1KtbvCRp18Eqi6tBZ0UYAgB0aUyV4VgIQwCALo1F1DgWwhAAoEtjWw4cC2EIANCl+abJvmSaDO0gDAEAurRhTSND31TW6dvqeourQWdEGAIAdGndEhzK7JEkiUXUaBthCADQ5bFuCEdDGAIAdHlcUYajibowtHz5cmVlZSkxMVE5OTnasGFDu31ffvllTZ8+Xb1791ZaWpqmTJmiN954I4LVAgA6A+41hKOJqjC0atUqLVq0SEuXLlVBQYGmTZum8847T4WFhW32X79+vaZPn661a9dq8+bNOuOMMzRz5kwVFBREuHIAgJV8YWhnSaVM07S4GnQ2hhlFfypOOeUUnXzyyXr00Uf9bSNHjtQFF1ygvLy8gF7jpJNO0pw5c3TLLbcE1L+iokJOp1Mul0tpaWnHVTcAwFr1bq9G3fK63F5T7990pgakJ1ldEsIsmM/vqBkZqq+v1+bNm5Wbm9uiPTc3Vx988EFAr+H1elVZWakePXq026eurk4VFRUtHgCA6BbvsGlo7xRJjaNDQHNRE4bKysrk8XiUkZHRoj0jI0MlJSUBvcb999+v6upqzZ49u90+eXl5cjqd/kdmZmaH6gYAdA4sokZ7oiYM+RiG0eK5aZqt2tqycuVK3XbbbVq1apX69OnTbr8lS5bI5XL5H0VFRR2uGQBgvREsokY7HFYXEKhevXrJbre3GgUqLS1tNVp0pFWrVunKK6/U6tWrdfbZZx+1b0JCghISEjpcLwCgc/GPDBGGcISoGRmKj49XTk6O8vPzW7Tn5+dr6tSp7R63cuVKXX755Xr++ed1/vnnh7tMAEAn5bui7N/fVMnt8VpcDTqTqBkZkqTFixfr0ksv1cSJEzVlyhT9+c9/VmFhoebPny+pcYrr66+/1l//+ldJjUFo3rx5+tOf/qTJkyf7R5WSkpLkdDotex8AgMjL7J6spDi7Djd49NWhGp3Yp5vVJaGTiJqRIUmaM2eOHnjgAd1xxx0aP3681q9fr7Vr12rw4MGSpOLi4hb3HHr88cfldrt17bXXql+/fv7HwoULrXoLAACL2GyGsjMaAxDbcqC5qLrPkBW4zxAAdB2/WbNVL27arwVnDdPi6dlWl4Mw6pL3GQIAoKN8i6i51xCaIwwBAGKGf1sOpsnQDGEIABAzfGHoq0PVqm3wWFwNOgvCEAAgZvTulqDuyXHymtK/S6usLgedBGEIABAzDMPwrxv6knVDaEIYAgDElBGsG8IRCEMAgJiSzR5lOAJhCAAQU9iwFUciDAEAYsqwpjVDJRW1ctU0WFwNOgPCEAAgpqQlxqm/M1GStLOU0SEQhgAAMch3vyGuKINEGAIAxCDfImq25YBEGAIAxKDhGSyixvcIQwCAmOObJttxsFKmaVpcDaxGGAIAxJwTeneT3WbIdbhBpZV1VpcDixGGAAAxJzHOriE9kyWxiBqEIQBAjBrOImo0IQwBAGISG7bChzAEAIhJbNgKH8IQACAm+UaGdpVWyuPlirJYRhgCAMSkwT1TlOCwqbbBq8Jva6wuBxYiDAEAYpLdZmhYRjdJ3Hwx1hGGAAAxyzdVxrqh2EYYAgDELN8iakaGYhthCAAQs3wjQzsYGYpphCEAQMzy3Xhxb1m16twei6uBVQhDAICY1TctUWmJDnm8pnaXVltdDixCGAIAxCzDML7floOpsphFGAIAxDRfGGJbjthFGAIAxLThXF4f8whDAICY5r+ijJGhmEUYAgDENN802dflh1VZ22BxNbACYQgAENPSk+OVkZYgSdp5sMriamAFwhAAIOYxVRbbCEMAgJg3gsvrYxphCAAQ8xgZim1RF4aWL1+urKwsJSYmKicnRxs2bDhq/3Xr1iknJ0eJiYkaOnSoHnvssQhVCgCIFiP6pklq3KPMNE2Lq0GkRVUYWrVqlRYtWqSlS5eqoKBA06ZN03nnnafCwsI2++/du1czZszQtGnTVFBQoN/+9rdasGCBXnrppQhXDgDozE7s002GIX1bXa+yqnqry0GEGWYUReBTTjlFJ598sh599FF/28iRI3XBBRcoLy+vVf8bb7xRr732mrZv3+5vmz9/vrZu3aoPP/wwoN9ZUVEhp9Mpl8ultLS0jr8JAECndPp97+irQzV67spT9B/DelldDjoomM/vqBkZqq+v1+bNm5Wbm9uiPTc3Vx988EGbx3z44Yet+p9zzjnatGmTGhravpdEXV2dKioqWjwAAF2f735DO1hEHXOiJgyVlZXJ4/EoIyOjRXtGRoZKSkraPKakpKTN/m63W2VlZW0ek5eXJ6fT6X9kZmaG5g0AADo1/7YcLKKOOVEThnwMw2jx3DTNVm3H6t9Wu8+SJUvkcrn8j6Kiog5WDACIBsObFlF/ychQzHFYXUCgevXqJbvd3moUqLS0tNXoj0/fvn3b7O9wONSzZ882j0lISFBCQkJoigYARI3hfbtJknYdrJTXa8pma/8f2uhaomZkKD4+Xjk5OcrPz2/Rnp+fr6lTp7Z5zJQpU1r1f/PNNzVx4kTFxcWFrVYAQPQZ3DNF8Xabauo92v/dYavLQQRFTRiSpMWLF+uJJ57QU089pe3bt+v6669XYWGh5s+fL6lximvevHn+/vPnz9e+ffu0ePFibd++XU899ZSefPJJ/frXv7bqLQAAOqk4u00n9GkcHWIRdWyJmmkySZozZ44OHTqkO+64Q8XFxRo9erTWrl2rwYMHS5KKi4tb3HMoKytLa9eu1fXXX69HHnlE/fv314MPPqgLL7zQqrcAAOjEhmd00/biCu08WKnpo9pegoGuJ6ruM2QF7jMEALFj+bv/1u9f36GZ4/rroUsmWF0OOqBL3mcIAIBw82/YyuX1MYUwBABAE9+Grbu/qVK922txNYgUwhAAAE0GpCepW4JDbq+pvWXVVpeDCCEMAQDQxDAMZWdwRVmsIQwBANCMf4+yEvamjBWEIQAAmvHtUbajpMriShAphCEAAJrJ9l1RxjRZzCAMAQDQjG9kqPDbGlXXuS2uBpFAGAIAoJme3RLUq1vjht27SpkqiwVRtR0HAACRMLxvN5X9u043rN6q7L6p6u9MVD9nkvqnN37tl56oXikJ7GzfRRCGAAA4wtQTeun9fx/SrtKqdkeH4uyG+vpCkjNR/dKT/KGpX3qi+juTlJ4cJ8MgMHV27E12DOxNBgCxxzRNff51hYq+q9GB8sMqdtWq2HVYB8obv5ZW1imQT8/EOJv6N4Wj5qGpnzNR/Zu+pibGhf8NxaBgPr8ZGQIA4AiGYWjMQKfGDHS2+fMGj1cHK2pV7Kr9PiyVH9aBptBUXF6rQ9X1qm3wak9ZtfYc5W7WqQmO78OSbxquWVjq50xSUrw9XG8VIgwBABC0OLtNA7sna2D35Hb71DZ4VOKq1YGmcFTsagpLTeHpQPlhVdS6VVnnVuXBKu082P5i7e7Jca3WLPVvFpoy0hIV7+CaqONFGAIAIAwS4+wa0itFQ3qltNunus7dYvrN97X5iFNNvUff1TTou5oGbStu+67YhiH16pag/ulJOql/msZnpmtCZrpO6N2NRd4BYM3QMbBmCABgFdM0VXHY3Ti61DwslTeNOLkap+rq3d42j09NcGhsplPjBqZrfGa6xg9KV5/UxAi/C2sE8/lNGDoGwhAAoDMzTVOHqutVXF6rwm9r9Nn+chUUletf+1063OBp1X9AepLGZ6ZrXKZT4zO7a8wAZ5dck0QYCiHCEAAgGrk9Xu08WKUtReXaUvSdtha5tLO0stVVcHaboeEZqRo/KF3jBzaOHp3YBabXCEMhRBgCAHQVVXVufba/vDEgFTZ+La2sa9WvW4JDYwc6m0aQGtcf9UmLruk1wlAIEYYAAF1ZseuwPxgdbXqtvzOxcfQoM13jBqZrzECnkuM773VYhKEQIgwBAGKJ2+PVrtKqFqNH7U2vZWek+q9cGz+o8eo1eyeZXiMMhRBhCAAQ66rq3PrXfpd//dGWonIdrGh7em3MAKd/BGl8ZroyLJpeIwyFEGEIAIDW/NNr+xtHkP71tUs19a2n1/o5E/3BaHxm5KbXCEMhRBgCAODYmk+vbS1qml47WCnvESnDZkjZGama4B896q4T+4R+eo0wFEKEIQAAjk/z6TVfQCqpqG3Vb8rQnlp59eSQ/m42agUAAJbrluDQlBN6asoJPf1tJa5abSn6TgVF30+vjeiXamGVhCEAABBBfZ2JOtfZT+eO7idJ8njNNi/ljyS2uAUAAJax2wx1S7B2bIYwBAAAYhphCAAAxDTCEAAAiGmEIQAAENMIQwAAIKYRhgAAQEwjDAEAgJhGGAIAADGNMAQAAGJa1ISh7777TpdeeqmcTqecTqcuvfRSlZeXt9u/oaFBN954o8aMGaOUlBT1799f8+bN04EDByJXNAAA6PSiJgzNnTtXW7Zs0euvv67XX39dW7Zs0aWXXtpu/5qaGn366ae6+eab9emnn+rll1/Wzp07NWvWrAhWDQAAOjvDNE3T6iKOZfv27Ro1apQ2btyoU045RZK0ceNGTZkyRV9++aWGDx8e0Ot88sknmjRpkvbt26dBgwa12aeurk51dXX+5xUVFcrMzJTL5VJaWlrH3wwAAAi7iooKOZ3OgD6/o2Jk6MMPP5TT6fQHIUmaPHmynE6nPvjgg4Bfx+VyyTAMpaent9snLy/PPxXndDqVmZnZkdIBAEAnZ+02sQEqKSlRnz59WrX36dNHJSUlAb1GbW2tbrrpJs2dO/eoCXHJkiVavHix/7nL5dKgQYNUUVERfOEAAMASvs/tQCbALA1Dt912m26//faj9vnkk08kSYZhtPqZaZptth+poaFBF198sbxer5YvX37UvgkJCUpISPA/951MRogAAIg+lZWVcjqdR+1jaRi67rrrdPHFFx+1z5AhQ/TZZ5/p4MGDrX72zTffKCMj46jHNzQ0aPbs2dq7d6/efvvtoNf99O/fX0VFRUpNTQ0oeAXDtx6pqKiI9UhhxHmODM5zZHCeI4PzHDnhOtemaaqyslL9+/c/Zl9Lw1CvXr3Uq1evY/abMmWKXC6XPv74Y02aNEmS9NFHH8nlcmnq1KntHucLQrt27dI777yjnj17Bl2jzWbTwIEDgz4uGGlpafxliwDOc2RwniOD8xwZnOfICce5PtaIkE9ULKAeOXKkzj33XP385z/Xxo0btXHjRv385z/XD3/4wxZXko0YMUKvvPKKJMntduuiiy7Spk2btGLFCnk8HpWUlKikpET19fVWvRUAANDJREUYkqQVK1ZozJgxys3NVW5ursaOHau//e1vLfrs2LFDLpdLkrR//3699tpr2r9/v8aPH69+/fr5H8FcgQYAALq2qLiaTJJ69Oih55577qh9mq8YHzJkSEAryK2UkJCgW2+9tcWCbYQe5zkyOM+RwXmODM5z5HSGcx0VN10EAAAIl6iZJgMAAAgHwhAAAIhphCEAABDTCEMAACCmEYbCbPny5crKylJiYqJycnK0YcOGo/Zft26dcnJylJiYqKFDh+qxxx6LUKXRLZjz/PLLL2v69Onq3bu30tLSNGXKFL3xxhsRrDZ6Bfvn2ef999+Xw+HQ+PHjw1tgFxHsea6rq9PSpUs1ePBgJSQk6IQTTtBTTz0VoWqjV7DnecWKFRo3bpySk5PVr18/XXHFFTp06FCEqo1O69ev18yZM9W/f38ZhqFXX331mMdY8jloImxeeOEFMy4uzvzLX/5ibtu2zVy4cKGZkpJi7tu3r83+e/bsMZOTk82FCxea27ZtM//yl7+YcXFx5po1ayJceXQJ9jwvXLjQvPfee82PP/7Y3Llzp7lkyRIzLi7O/PTTTyNceXQJ9jz7lJeXm0OHDjVzc3PNcePGRabYKHY853nWrFnmKaecYubn55t79+41P/roI/P999+PYNXRJ9jzvGHDBtNms5l/+tOfzD179pgbNmwwTzrpJPOCCy6IcOXRZe3atebSpUvNl156yZRkvvLKK0ftb9XnIGEojCZNmmTOnz+/RduIESPMm266qc3+v/nNb8wRI0a0aLvmmmvMyZMnh63GriDY89yWUaNGmbfffnuoS+tSjvc8z5kzx/zd735n3nrrrYShAAR7nv/xj3+YTqfTPHToUCTK6zKCPc/33XefOXTo0BZtDz74oDlw4MCw1djVBBKGrPocZJosTOrr67V582bl5ua2aM/NzW33Dtgffvhhq/7nnHOONm3apIaGhrDVGs2O5zwfyev1qrKyUj169AhHiV3C8Z7np59+Wrt379att94a7hK7hOM5z6+99pomTpyo3//+9xowYICys7P161//WocPH45EyVHpeM7z1KlTtX//fq1du1amaergwYNas2aNzj///EiUHDOs+hyMmjtQR5uysjJ5PB5lZGS0aM/IyFBJSUmbx5SUlLTZ3+12q6ysTP369QtbvdHqeM7zke6//35VV1dr9uzZ4SixSzie87xr1y7ddNNN2rBhgxwO/lcTiOM5z3v27NF7772nxMREvfLKKyorK9MvfvELffvtt6wbasfxnOepU6dqxYoVmjNnjmpra+V2uzVr1iw99NBDkSg5Zlj1OcjIUJgZhtHiuWmardqO1b+tdrQU7Hn2WblypW677TatWrVKffr0CVd5XUag59nj8Wju3Lm6/fbblZ2dHanyuoxg/jx7vV4ZhqEVK1Zo0qRJmjFjhpYtW6ZnnnmG0aFjCOY8b9u2TQsWLNAtt9yizZs36/XXX9fevXs1f/78SJQaU6z4HOSfa2HSq1cv2e32Vv/KKC0tbZV6ffr27dtmf4fDoZ49e4at1mh2POfZZ9WqVbryyiu1evVqnX322eEsM+oFe54rKyu1adMmFRQU6LrrrpPU+KFtmqYcDofefPNNnXnmmRGpPZocz5/nfv36acCAAXI6nf62kSNHyjRN7d+/X8OGDQtrzdHoeM5zXl6eTj31VN1www2SpLFjxyolJUXTpk3TXXfdxch9iFj1OcjIUJjEx8crJydH+fn5Ldrz8/M1derUNo+ZMmVKq/5vvvmmJk6cqLi4uLDVGs2O5zxLjSNCl19+uZ5//nnm/AMQ7HlOS0vTv/71L23ZssX/mD9/voYPH64tW7bolFNOiVTpUeV4/jyfeuqpOnDggKqqqvxtO3fulM1m08CBA8Nab7Q6nvNcU1Mjm63lR6bdbpekTr8peDSx7HMwrMuzY5zv0s0nn3zS3LZtm7lo0SIzJSXF/Oqrr0zTNM2bbrrJvPTSS/39fZcUXn/99ea2bdvMJ598kkvrAxDseX7++edNh8NhPvLII2ZxcbH/UV5ebtVbiArBnucjcTVZYII9z5WVlebAgQPNiy66yPziiy/MdevWmcOGDTOvuuoqq95CVAj2PD/99NOmw+Ewly9fbu7evdt87733zIkTJ5qTJk2y6i1EhcrKSrOgoMAsKCgwJZnLli0zCwoK/Lcw6Cyfg4ShMHvkkUfMwYMHm/Hx8ebJJ59srlu3zv+zyy67zDzttNNa9H/33XfNCRMmmPHx8eaQIUPMRx99NMIVR6dgzvNpp51mSmr1uOyyyyJfeJQJ9s9zc4ShwAV7nrdv326effbZZlJSkjlw4EBz8eLFZk1NTYSrjj7BnucHH3zQHDVqlJmUlGT269fP/M///E9z//79Ea46urzzzjtH/f9tZ/kcNEyT8T0AABC7WDMEAABiGmEIAADENMIQAACIaYQhAAAQ0whDAAAgphGGAABATCMMAQCAmEYYAgAAMY0wBKDTOv3007Vo0aJO+TuGDBmiBx54IOT1AIg8whAAAIhphCEAABDTCEMAosJzzz2niRMnKjU1VX379tXcuXNVWlrq//m7774rwzD0xhtvaMKECUpKStKZZ56p0tJS/eMf/9DIkSOVlpamSy65RDU1NS1e2+1267rrrlN6erp69uyp3/3ud2q+bWNpaalmzpyppKQkZWVlacWKFa3qW7ZsmcaMGaOUlBRlZmbqF7/4haqqqsJ3QgCEDGEIQFSor6/XnXfeqa1bt+rVV1/V3r17dfnll7fqd9ttt+nhhx/WBx98oKKiIs2ePVsPPPCAnn/+ef39739Xfn6+HnrooRbHPPvss3I4HProo4/04IMP6o9//KOeeOIJ/88vv/xyffXVV3r77be1Zs0aLV++vEUQkySbzaYHH3xQn3/+uZ599lm9/fbb+s1vfhOWcwEgxDq+8T0AhMdpp51mLly4sM2fffzxx6Yks7Ky0jRN03znnXdMSeZbb73l75OXl2dKMnfv3u1vu+aaa8xzzjmnxe8YOXKk6fV6/W033nijOXLkSNM0TXPHjh2mJHPjxo3+n2/fvt2UZP7xj39st/YXX3zR7NmzZ1DvF4A1GBkCEBUKCgr0ox/9SIMHD1ZqaqpOP/10SVJhYWGLfmPHjvV/n5GRoeTkZA0dOrRF25GjOpMnT5ZhGP7nU6ZM0a5du+TxeLR9+3Y5HA5NnDjR//MRI0YoPT29xWu88847mj59ugYMGKDU1FTNmzdPhw4dUnV1dUffOoAwIwwB6PSqq6uVm5urbt266bnnntMnn3yiV155RVLj9FlzcXFx/u8Nw2jx3Nfm9XoD/t1m09qh5mHpSPv27dOMGTM0evRovfTSS9q8ebMeeeQRSVJDQ0PAvwuANRxWFwAAx/Lll1+qrKxM99xzjzIzMyVJmzZtCtnrb9y4sdXzYcOGyW63a+TIkXK73dq0aZMmTZokSdqxY4fKy8v9/Tdt2iS32637779fNlvjvzFffPHFkNUHILwYGQLQ6Q0aNEjx8fF66KGHtGfPHr322mu68847Q/b6RUVFWrx4sXbs2KGVK1fqoYce0sKFCyVJw4cP17nnnquf//zn+uijj7R582ZdddVVSkpK8h9/wgknyO12++v729/+psceeyxk9QEIL8IQgE6vd+/eeuaZZ7R69WqNGjVK99xzj/7whz+E7PXnzZunw4cPa9KkSbr22mv1y1/+UldffbX/508//bQyMzN12mmn6Sc/+Ymuvvpq9enTx//z8ePHa9myZbr33ns1evRorVixQnl5eSGrD0B4GabZ7GYaAAAAMYaRIQAAENMIQwAAIKYRhgAAQEwjDAEAgJhGGAIAADGNMAQAAGIaYQgAAMQ0whAAAIhphCEAABDTCEMAACCmEYYAAEBM+/8BZsjj1tTjfRYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABALElEQVR4nO3de3yU5Z3///ccksl5AgkJBMJJIYCoYFhOLqtViYqV2tWC0hpxscpPrSjbVqnW8zbaVup6QN0q2FWkiKf1t0vVtFpAERQM2sqxgCRIQkggkxM5zMz9/WMyQ0ISmIE5ZDKv5+MxDzLXXPfkM3ex8+a6r/u6TIZhGAIAAIhR5kgXAAAAEEmEIQAAENMIQwAAIKYRhgAAQEwjDAEAgJhGGAIAADGNMAQAAGKaNdIF9HRut1sHDhxQamqqTCZTpMsBAAB+MAxDdXV1ysnJkdl84rEfwtBJHDhwQLm5uZEuAwAAnIKysjINGjTohH0IQyeRmpoqyXMy09LSIlwNAADwR21trXJzc33f4ydCGDoJ76WxtLQ0whAAAFHGnykuTKAGAAAxjTAEAABiGmEIAADENMIQAACIaYQhAAAQ0whDAAAgphGGAABATCMMAQCAmEYYAgAAMY0wBAAAYhphCAAAxDTCEAAAiGls1BohjS1OVde3yGI2yWo2ydzuT4vJJIu57WHytAEAgNAgDEXImh2H9P8t/8KvviaTOgakdkHJnzazqWPg6qrNG8JOFMzav2Y1m2W1mBRnMcliNivO0tZmNslqMclqMSuu7bg4i6ev7+e2Pz3Pj72X7z3NZlkspg79AAAIFcJQhJhMUkKcWW635DIMudxGt30NQ3Iahpwn6NObmUzqEMA8gcsTtqyWdgGsLZRZvK97g1pbqIq3tntYzLK1/ex7rV0f23HPj3+tq2PiLWaZTAQ3AIg2hKEIuWzsAG0fO8D33DAMuQ3J6XYfC0guQy7D8LV1eM3tliuANt+f3bW53HIZx9rchiFn2+/v1OZ2q9VtyOlyy+n2tDndbrW6PKGu1eVu62eo1e35udXllsvtCXTe151uz3He471txzMMqdVlqNXlklrD+b9S4LoLUN7wZOvm9a4CWkKcWYnxViXGWZQUb1FinEWJbX8mxbf/2Sqb1czlVAA4RYShHsJkMslikixmS6RLiSijbQSsfahqdbcFqXahqvW4AOZ0eQKaq62tY8Byq8VlqMXpPvZwudr97FZzu9daXZ427/NmZ8fn7X8+Pry1tB2r5vCfu/ZhKTHeE5gSugtScRYlxlu7fC0hvqtjrFyuBNBrEYbQo5hMnnlEcRYpIa7nB0O32/AFoI5hq12Q6hSmXGp1GmrudEzHgNbU6tbRFpcaW11qanGpsdWpoy0uz6PVpcYWl5qdbl8tR1s97aESbzF3DE2dRqgsSrZZ1ScpXulJceqTFK8+yXGyJ8arT9vztMQ4QhWAHocwBJwGs9mkBLMlYsHN7TZ8Iah9SPL87NTRFrcaW5xq8rYf36/teWOLU0db3Tra4jzWpy2IGW2DXy0ut1qOuuU4eurXKk0myZ4Y1yEwpSfFKb0tMKUnHwtOvkCVFK/E+J4fjAFEL8IQEMXMZpOSbVYl20Lzn7JhGGp2ujsEqI7BytkhgNU1OVXT2KIjja060tiimrY/HY2tqmt2yjCkmsZW1TQGFqhsVnOH8OT5s2Nw8j73/mlPjJPVwlJqAE6OMASgWyaTSQlxnpGvPqf5Xq0ud1sQah+W2v3c0Pbn0WN9ahpb1OryBLKDtc06WBvYZKy0BKv6JB8LTumJ3rDkuYSXnhSvrFSbRmSlKCPFdpqfEEC0IgwBCIs4i1n9Um3ql+p/6DAMQw0tLh1pODbK5B1xqjkuULUPVnVNTklSbZNTtU1O7atuPOnvykiO14jsFI3MTtWI7FSNzPL83Cc5/pQ/M4DoQBgC0GOZTCal2KxKsVmV29f/45wud9sIU9cjUTWNLTrSNhJ1wHFUZYePqrqhRdV7DmvDnsMd3iszxaaRvpDk+XNkVqrsSXFB/rQAIoUwBKDXsVrMykyxKdPPS1+NLU79o7JeOw/Wa9fBOu08WKedB+v1bc1RVdU3q6q+Wet3V3c4JivV1jEgZafozKxU2RMJSUC0MRmGEZvLGvuptrZWdrtdDodDaWlpkS4HQBg1NDu1q7JeOw/WtYUkT1g64Gjq9pj+aQkakZ2iEVmegDSiLSilJhCSgHAK5PubMHQShCEAx6tratWuyvpjAant5/IThKQB9oQOc5FGtAWllBDdCQjEOsJQEBGGAPirtqlVuw62D0meS24nugtuYHrisYnb7YJSUjwhCTgdhKEgIgwBOF2Oxta2YNR2ya3t50N13YekQX0Sj81JykrVyOxUnZmVwgKUgJ8IQ0FEGAIQKjWNLccCUrvRpKr6li77m0xSbp8k5Q/po/uuGM3aSMAJEIaCiDAEINwON7R0CEie0aR6HW44FpLyslP12o8nEYiAbgTy/R1Va9WvXbtWV155pXJycmQymfTOO++csP9bb72l6dOnq1+/fkpLS9OUKVP0/vvvh6dYADhFfZPjNXl4hq6fMlSPXDVWK2+Zoi9+OV2b7rtEL9/4T8pKtWnHwTrN+f1GVdcHtio3gM6iKgw1NDTo3HPP1TPPPONX/7Vr12r69OlavXq1Nm/erO985zu68sorVVJSEuJKASD4MlNsujAvS3+8ebIvEP3wRQIRcLqi9jKZyWTS22+/rauuuiqg48466yzNnj1b999/v1/9uUwGoCfafahe1/3XBlXWNWtU/1S99uPJ6svWIYBPr71Mdrrcbrfq6urUt2/36/o3Nzertra2wwMAepoz+qVoRdsI0faKOs35/YYOc4oA+C+mwtATTzyhhoYGzZo1q9s+RUVFstvtvkdubm4YKwQA/3kDUT8CEXBaYiYMrVixQg8++KBWrlyprKysbvstWrRIDofD9ygrKwtjlQAQmDP6pWjFj48Foh++uJFABAQoJsLQypUrNW/ePL3++uu65JJLTtjXZrMpLS2twwMAerIzs44Fom3ltfrhixt1hEAE+K3Xh6EVK1Zo7ty5eu2113TFFVdEuhwACAlvIMpM8QSiOQQiwG9RFYbq6+u1ZcsWbdmyRZK0d+9ebdmyRaWlpZI8l7gKCwt9/VesWKHCwkI98cQTmjx5sioqKlRRUSGHwxGJ8gEgpM7MStEfb57kC0SMEAH+iaowtGnTJo0fP17jx4+XJC1cuFDjx4/33SZfXl7uC0aS9MILL8jpdOq2227TgAEDfI8FCxZEpH4ACLUzs1J9gWgrgQjwS9SuMxQurDMEIBrtOlin636/QVX1LTorJ03Lb5qk9CTWIULsYJ0hAIhxI7JT2+YQxevrA54RoppGRoiArhCGAKCXIhAB/iEMAUAvNiLbs1VHRrInEP3oJQIRcDzCEAD0ciOzU7XiZk8g+vu3nkDkaGyNdFlAj0EYAoAYcHwg+uFLGwhEQBvCEADEiJHtLpkxQgQcQxgCgBiS198TiPomx+tv3zp0/VICEUAYAoAYk9ffc5dZ3+R4fbW/LRAdJRAhdhGGACAGeUaIJh0LRC8RiBC7CEMAEKNG9fesTO0NRIUEIsQowhAAxLDRAzyBqE9SnL4kECFGEYYAIMaNHpCm1348+VggWvqZapsIRIgdhCEAQNsIUVsgKqvR9S8RiBA7CEMAAEnSmBwCEWITYQgA4OMNROltgaiQQIQYQBgCAHTgCUSTlJ4Upy1lNbqBOUTo5QhDAIBOzsqx+wJRSaknENURiNBLEYYAAF06K8euV+dNkj3RE4gKCUTopQhDAIBujR3oGSHyBiJGiNAbEYYAACfUPhB9QSBCL0QYAgCc1PGBaO6yz1Xf7Ix0WUBQEIYAAH5pH4g27zuiG5Z+RiBCr0AYAgD4zRuI0hKsBCL0GoQhAEBAPIFosi8QzSUQIcoRhgAAATt7kF2vto0Qbdp3RDcuIxAhehGGAACn5JxB6b5A9Pk3BCJEL8IQAOCUeQNRartA1EAgQpQhDAEATss5g9L16rz2gehzAhGiCmEIAHDazs09Fog+++YwgQhRhTAEAAiKc3PT9cq8SUq1tQWilwlEiA6EIQBA0IzLTdcrN7UFor2eQNTYQiBCz0YYAgAE1fGBaO4yAhF6NsIQACDoxuWm67/nTTw2QrTsczW1uiJdFtAlwhAAICTGD+6jP7QFoo17D+vdLw9EuiSgS4QhAEDInDe4j66bNFiStPVAbYSrAbpGGAIAhNTI7FRJ0vYKwhB6pqgKQ2vXrtWVV16pnJwcmUwmvfPOOyc9Zs2aNcrPz1dCQoKGDx+u559/PvSFAgB8RvX3hKEdFXUyDCPC1QCdRVUYamho0LnnnqtnnnnGr/579+7VjBkzNG3aNJWUlOgXv/iF7rjjDr355pshrhQA4HVmVopMJulIY6uq6lsiXQ7QiTXSBQTi8ssv1+WXX+53/+eff16DBw/Wk08+KUkaPXq0Nm3apN/+9re6+uqrQ1QlAKC9hDiLhmYka29Vg3ZU1Klfqi3SJQEdRNXIUKA+/fRTFRQUdGi79NJLtWnTJrW2tnZ5THNzs2prazs8AACnJ69t3tCOg3URrgTorFeHoYqKCmVnZ3doy87OltPpVFVVVZfHFBUVyW63+x65ubnhKBUAerWRbfOGdlYQhtDz9OowJEkmk6nDc+/kvePbvRYtWiSHw+F7lJWVhbxGAOjtvCND2xkZQg8UVXOGAtW/f39VVFR0aKusrJTValVGRkaXx9hsNtlsXM8GgGDKaxsZ2nWwTm63IbO563+QApHQq0eGpkyZouLi4g5tH3zwgSZMmKC4uLgIVQUAsWdoRpLiLWY1trj0bc3RSJcDdBBVYai+vl5btmzRli1bJHlund+yZYtKS0sleS5xFRYW+vrPnz9f+/bt08KFC7Vt2zYtXbpUL730kn76059GonwAiFlWi1lnZKVIkrYzbwg9TFSFoU2bNmn8+PEaP368JGnhwoUaP3687r//fklSeXm5LxhJ0rBhw7R69Wr99a9/1bhx4/TII4/oqaee4rZ6AIgA7+KLO5k3hB4mquYMXXjhhSdcvfTll1/u1HbBBRfoiy++CGFVAAB/eLfl2MHIEHqYqBoZAgBEr7z+nstkhCH0NIQhAEBY5PVPkyTtPlSvFqc7wtUAxxCGAABhkWNPUIrNKqfb0DfVDZEuB/AhDAEAwsJkMmlkNneUoechDAEAwsZ7qYxtOdCTEIYAAGGT1zYyxIat6EkIQwCAsPFu2ModZehJCEMAgLDxbthaerhRjS3OCFcDeBCGAABhk5FiU2aKZzPsXQfrI1wN4EEYAgCEFYsvoqchDAEAwsq3LQeTqNFDEIYAAGHFhq3oaQhDAICw8o4MsfAiegrCEAAgrEa0haFDdc063NAS4WoAwhAAIMxSbFbl9k2UxKUy9AyEIQBA2HnXG+KOMvQEhCEAQNhxRxl6EsIQACDs8rx3lDEyhB6AMAQACDtvGNpxsE6GYUS4GsQ6whAAIOyGZ6bIajaprsmpckdTpMtBjCMMAQDCLt5q1vB+yZKYN4TIIwwBACJiJHeUoYcgDAEAIsJ7ez2TqBFphCEAQES0n0QNRBJhCAAQEd4wtKuyXk6XO8LVIJYRhgAAEZHbJ0mJcRa1ON3ad7gx0uUghhGGAAARYTabNDI7RRLzhhBZhCEAQMR47yjbThhCBBGGAAAR49uWg0nUiCDCEAAgYrijDD0BYQgAEDHetYa+qWpQU6srwtUgVhGGAAAR0y/VpvSkOLkN6R+V9ZEuBzGKMAQAiBiTyXRsJWoulSFCCEMAgIjyzRvijjJECGEIABBRvg1bGRlChBCGAAARNao/G7YisghDAICIGtE2MnTA0STH0dYIV4NYFHVhaMmSJRo2bJgSEhKUn5+vdevWnbD/8uXLde655yopKUkDBgzQjTfeqOrq6jBVCwA4GXtinAbYEyRJu7hUhgiIqjC0cuVK3Xnnnbr33ntVUlKiadOm6fLLL1dpaWmX/T/++GMVFhZq3rx5+vrrr7Vq1Sp9/vnnuummm8JcOQDgRFh8EZEUVWFo8eLFmjdvnm666SaNHj1aTz75pHJzc/Xcc8912X/Dhg0aOnSo7rjjDg0bNkz//M//rFtuuUWbNm3q9nc0Nzertra2wwMAEFre2+u5owyREDVhqKWlRZs3b1ZBQUGH9oKCAq1fv77LY6ZOnar9+/dr9erVMgxDBw8e1BtvvKErrrii299TVFQku93ue+Tm5gb1cwAAOhtJGEIERU0YqqqqksvlUnZ2dof27OxsVVRUdHnM1KlTtXz5cs2ePVvx8fHq37+/0tPT9fTTT3f7exYtWiSHw+F7lJWVBfVzAAA6a79hq2EYEa4GsSZqwpCXyWTq8NwwjE5tXlu3btUdd9yh+++/X5s3b9Z7772nvXv3av78+d2+v81mU1paWocHACC0zsxKkdkkHWls1aG65kiXgxhjjXQB/srMzJTFYuk0ClRZWdlptMirqKhI559/vn72s59Jks455xwlJydr2rRpevTRRzVgwICQ1w0AOLmEOIuGZiRrT1WDdhysU1ZaQqRLQgyJmpGh+Ph45efnq7i4uEN7cXGxpk6d2uUxjY2NMps7fkSLxSJJDMMCQA/DthyIlKgJQ5K0cOFCvfjii1q6dKm2bdumu+66S6Wlpb7LXosWLVJhYaGv/5VXXqm33npLzz33nPbs2aNPPvlEd9xxhyZOnKicnJxIfQwAQBeYRI1IiZrLZJI0e/ZsVVdX6+GHH1Z5ebnGjh2r1atXa8iQIZKk8vLyDmsOzZ07V3V1dXrmmWf07//+70pPT9dFF12kxx9/PFIfAQDQjfaTqIFwMhlcLzqh2tpa2e12ORwOJlMDQAjtPlSvi59Yo8Q4i75+6FKZzV3fHAP4I5Dv76i6TAYA6L2G9E1SvNWso60ulR1pjHQ5iCGEIQBAj2C1mHVmvxRJzBtCeBGGAAA9xijmDSECCEMAgB5jZFsY2s7IEMIo4DC0bNkyrVq1qlP7qlWr9Ic//CEoRQEAYpN3w1ZGhhBOAYehxx57TJmZmZ3as7Ky9Ktf/SooRQEAYpP39vo9hxrU4nRHuBrEioDD0L59+zRs2LBO7UOGDOmwxg8AAIEaYE9Qqs0qp9vQnqr6SJeDGBFwGMrKytJXX33Vqf3LL79URkZGUIoCAMQmk8nkmzfEHWUIl4DD0LXXXqs77rhDH330kVwul1wulz788EMtWLBA1157bShqBADEEFaiRrgFvB3Ho48+qn379uniiy+W1eo53O12q7CwkDlDAIDTlsceZQizgMNQfHy8Vq5cqUcffVRbtmxRYmKizj77bN/+YAAAnA7fhq2MDCFMTnmj1hEjRmjEiBHBrAUAAN9lsrLDR9XQ7FSyLar2FEcUCnjO0DXXXKPHHnusU/tvfvMb/eAHPwhKUQCA2NU3OV79Um2SmDeE8Ag4DK1Zs0ZXXHFFp/bLLrtMa9euDUpRAIDYxuKLCKeAw1B9fb3i4+M7tcfFxam2tjYoRQEAYlue7/Z61hpC6AUchsaOHauVK1d2av/jH/+oMWPGBKUoAEBs891RdpB/ZCP0Ap6V9stf/lJXX321du/erYsuukiS9Je//EUrVqzocs8yAAACNZKRIYRRwGFo5syZeuedd/SrX/1Kb7zxhhITE3XOOefoz3/+sy644IJQ1AgAiDEjs1MkSVX1zaqub1ZGii3CFaE38+sy2VNPPaWmpiZJUmlpqWbMmKFPPvlEDQ0Nqqqq0ocffkgQAgAETVK8VYP7JklivSGEnl9haOHChb7J0cOGDdOhQ4dCWhQAAN7FF3eyEjVCzK/LZDk5OXrzzTc1Y8YMGYah/fv3+0aKjjd48OCgFggAiE2j+qfqz9sOasdB5g0htPwKQ/fdd59+8pOf6Pbbb5fJZNI//dM/depjGIZMJpNcLlfQiwQAxJ5jk6i5owyh5VcYuvnmm3Xddddp3759vsnSGRkZoa4NABDDji28WO/7BzcQCn7fTZaamqqxY8dq2bJlOv/882WznXhm/4oVKzRz5kwlJyefdpEAgNgzLDNZcRaT6pudOuBo0sD0xEiXhF4q4EUXb7jhhpMGIUm65ZZbdPDgwVMqCgCAeKtZwzM9t9gziRqhFHAY8pdhGKF6awBAjPDOG9pOGEIIhSwMAQBwukb1Z8NWhB5hCADQY3nXGtrByBBCiDAEAOixvHeU/eNQvZwud4SrQW9FGAIA9FiD+iQqKd6iFqdb31Q3Rroc9FIhC0NDhgxRXFxcqN4eABADzGaTRmQzbwih5XcY+uyzzzqsLn383WLNzc16/fXXfc///ve/Kzc3NwglAgBiWV7bDvbcUYZQ8TsMTZkyRdXV1b7ndrtde/bs8T2vqanRddddF9zqAAAxjw1bEWp+h6HjR4K6WkeItYUAAME2qn+aJC6TIXSCOmeIfWMAAME2sr/nMtk31Q1qamUzcAQfd5MBAHq0fik29UmKk9uQ/lFZH+ly0AsFFIa2bt2qr776Sl999ZUMw9D27dt9z7/++utQ1djBkiVLNGzYMCUkJCg/P1/r1q07Yf/m5mbde++9GjJkiGw2m8444wwtXbo0LLUCAE6fyWRSXn8WX0To+L1rvSRdfPHFHeYFffe735Xk+YtqGEbIL5OtXLlSd955p5YsWaLzzz9fL7zwgi6//HJt3bpVgwcP7vKYWbNm6eDBg3rppZd05plnqrKyUk6nM6R1AgCCKy87VRv2HNYO5g0hBPwOQ3v37g1lHX5ZvHix5s2bp5tuukmS9OSTT+r999/Xc889p6Kiok7933vvPa1Zs0Z79uxR3759JUlDhw4NZ8kAgCAYycgQQsjvMDRkyJBQ1nFSLS0t2rx5s+65554O7QUFBVq/fn2Xx7z77ruaMGGCfv3rX+uVV15RcnKyZs6cqUceeUSJiYldHtPc3Kzm5mbf89ra2uB9CADAKWHDVoRSQJfJIqmqqkoul0vZ2dkd2rOzs1VRUdHlMXv27NHHH3+shIQEvf3226qqqtKtt96qw4cPdztvqKioSA899FDQ6wcAnDrvKtTljiY5GltlT2KHAwRP1N1Ndvy8pBPNVXK73TKZTFq+fLkmTpyoGTNmaPHixXr55Zd19OjRLo9ZtGiRHA6H71FWVhb0zwAACExaQpxy7AmSpJ2VjA4huKImDGVmZspisXQaBaqsrOw0WuQ1YMAADRw4UHa73dc2evRoGYah/fv3d3mMzWZTWlpahwcAIPK4owyhEjVhKD4+Xvn5+SouLu7QXlxcrKlTp3Z5zPnnn68DBw6ovv7YuhQ7d+6U2WzWoEGDQlovACC4mESNUDmtMPTYY4+ppqYmSKWc3MKFC/Xiiy9q6dKl2rZtm+666y6VlpZq/vz5kjyXuAoLC33958yZo4yMDN14443aunWr1q5dq5/97Gf6t3/7t24nUAMAeqa8tnlD3F6PYDutCdS/+tWvNGvWLKWnpwepnBObPXu2qqur9fDDD6u8vFxjx47V6tWrfXe6lZeXq7S01Nc/JSVFxcXF+slPfqIJEyYoIyNDs2bN0qOPPhqWegEAwZPX7o6ycKxth9hhMk5jd9XU1FR9+eWXGj58eDBr6lFqa2tlt9vlcDiYPwQAEdTU6tKY+9+T25A2/uJiZaclRLok9GCBfH9HzZwhAEBsS4izaGhmsiTmDSG4TisMbd26NeKLMQIAYgeLLyIUTisM5ebmymKxBKsWAABOaGTbJOrtjAwhiLhMBgCIGt47yhgZQjARhgAAUaP9HWVu9ynf/wN0QBgCAESNIRnJirea1dTqVunhxkiXg16CMAQAiBoWs0kjslIksfgigifgMHTNNdfoscce69T+m9/8Rj/4wQ+CUhQAAN3xXSpjEjWCJOAwtGbNGl1xxRWd2i+77DKtXbs2KEUBANAd7yTq7YwMIUgCDkP19fWKj4/v1B4XF6fa2tqgFAUAQHdGMjKEIAs4DI0dO1YrV67s1P7HP/5RY8aMCUpRAAB0x7vw4t6qBjU7XRGuBr1BwBu1/vKXv9TVV1+t3bt366KLLpIk/eUvf9GKFSu0atWqoBcIAEB7/dMSlJpgVV2TU3sONWj0APaNxOkJeGRo5syZeuedd/SPf/xDt956q/793/9d+/fv15///GddddVVISgRAIBjTCYTiy8iqAIeGZKkK664ostJ1AAAhENe/1Rt2neEDVsRFAGPDH3++efauHFjp/aNGzdq06ZNQSkKAIAT8d5eTxhCMAQchm677TaVlZV1av/222912223BaUoAABOxLthKwsvIhgCDkNbt27Veeed16l9/Pjx2rp1a1CKAgDgRLxzhvYfOar6ZmeEq0G0CzgM2Ww2HTx4sFN7eXm5rNZTmoIEAEBA+iTHKyvVJolJ1Dh9AYeh6dOna9GiRXI4HL62mpoa/eIXv9D06dODWhwAAN1hWw4ES8BDOU888YT+5V/+RUOGDNH48eMlSVu2bFF2drZeeeWVoBcIAEBX8rJTtW5XFfOGcNoCDkMDBw7UV199peXLl+vLL79UYmKibrzxRl133XWKi4sLRY0AAHQykjvKECSnNMknOTlZN998c7BrAQDAbyy8iGA5pTC0Y8cOPf3009q2bZtMJpNGjRql22+/XaNGjQp2fQAAdGlEdopMJqmqvkVV9c3KTLFFuiREqYAnUL/xxhsaO3asNm/erHPPPVfnnHOOvvjiC5199tnsTQYACJukeKsG902SxCRqnJ6AR4Z+/vOfa9GiRXr44Yc7tD/wwAO6++679YMf/CBoxQEAcCIjs1O1r7pROw7WaeqZmZEuB1Eq4JGhiooKFRYWdmr/0Y9+pIqKiqAUBQCAP0b1Z94QTl/AYejCCy/UunXrOrV//PHHmjZtWlCKAgDAH95tObZzmQynwa/LZO+++67v55kzZ+ruu+/W5s2bNXnyZEnShg0btGrVKj300EOhqRIAgC60X3jRMAyZTKYIV4RoZDIMwzhZJ7PZvwEkk8kkl8t12kX1JLW1tbLb7XI4HEpLS4t0OQCAdlpdbo25/z21ugx9fPd3NKhPUqRLQg8RyPe3XynH7Xb79ehtQQgA0LPFWcw6o1+KJBZfxKkLeM6Qv84++2yVlZWF6u0BAJB0bN4Q23LgVIUsDH3zzTdqbW0N1dsDACCJDVtx+kIWhgAACIc87ijDaSIMAQCimndkaM+hBrW63BGuBtGIMAQAiGoD0xOVHG9Ri8utfdUNkS4HUYgwBACIamazSSO4VIbTEHVhaMmSJRo2bJgSEhKUn5/f5WrYXfnkk09ktVo1bty40BYIAAg777whJlHjVIQsDL3wwgvKzs4O6nuuXLlSd955p+69916VlJRo2rRpuvzyy1VaWnrC4xwOhwoLC3XxxRcHtR4AQM/gnTfE7fU4FX6HoRkzZsjhcPie/8d//Idqamp8z6urqzVmzBjf8zlz5ig5OTk4VbZZvHix5s2bp5tuukmjR4/Wk08+qdzcXD333HMnPO6WW27RnDlzNGXKlKDWAwDoGXxhiJEhnAK/w9D777+v5uZm3/PHH39chw8f9j13Op3asWNHcKtrp6WlRZs3b1ZBQUGH9oKCAq1fv77b45YtW6bdu3frgQce8Ov3NDc3q7a2tsMDANCzeRde3He4UUdb2A0BgfE7DB2/hZkfW5oFVVVVlVwuV6dLb9nZ2aqoqOjymF27dumee+7R8uXLZbX6tSetioqKZLfbfY/c3NzTrh0AEFr9Um3KSI6XYUj/qKyPdDmIMlE3gfr4HYm726XY5XJpzpw5euihhzRy5Ei/33/RokVyOBy+B1uKAEB0GOm7o4wRfQTGv+ESeULI8aGjqxASKpmZmbJYLJ1GgSorK7ucqF1XV6dNmzappKREt99+uyTPhrOGYchqteqDDz7QRRdd1Ok4m80mm80Wmg8BAAiZvP6p+nRPtXYyiRoB8jsMGYahuXPn+oJCU1OT5s+f75sk3X4+USjEx8crPz9fxcXF+v73v+9rLy4u1ve+971O/dPS0vS3v/2tQ9uSJUv04Ycf6o033tCwYcNCWi8AILyO3VHGZTIExu8wdMMNN3R4/qMf/ahTn8LCwtOv6AQWLlyo66+/XhMmTNCUKVP0X//1XyotLdX8+fMleS5xffvtt/rv//5vmc1mjR07tsPxWVlZSkhI6NQOAIh+vt3ruUyGAPkdhpYtWxbKOvwye/ZsVVdX6+GHH1Z5ebnGjh2r1atXa8iQIZKk8vLyk645BADonUZmp0iSDtY2q6axRelJ8RGuCNHCZIT7trAoU1tbK7vdLofDobS0tEiXAwA4gfMf+1Df1hzV67dM0cRhfSNdDiIokO/vqLubDACA7hxbfJFLZfAfYQgA0Gv45g1xRxkCQBgCAPQaef0984Z2VnBHGfxHGAIA9Bp52Z65IdsrasO+UwKiF2EIANBrDO+XLIvZpNompw7Whnb9O/QehCEAQK+REGfR0IwkScwbgv8IQwCAXmVUf8+lMu4og78IQwCAXuXYStRMooZ/CEMAgF7Fd0cZl8ngJ8IQAKBXyWu7TLbzYJ1cbu4ow8kRhgAAvcrgvkmyWc1qdrpVergx0uUgChCGAAC9isVs0oi2TVt3VHCpDCdHGAIA9DrexRcJQ/AHYQgA0OswiRqBIAwBAHodNmxFIAhDAIBex7vw4t6qBjU7XRGuBj0dYQgA0Otkp9mUlmCVy21od2VDpMtBD0cYAgD0OiaTSXn9PZfKmDeEkyEMAQB6JW8Y2s4dZTgJwhAAoFfKy2ZkCP4hDAEAeqVjG7YShnBihCEAQK/kvUz2bc1R1TW1Rrga9GSEIQBAr5SeFK/sNJskaefB+ghXg56MMAQA6LVGMm8IfiAMAQB6rVH9mTeEkyMMAQB6LSZRwx+EIQBAr8XCi/AHYQgA0GuNyEqVySRVN7ToUF1zpMtBD0UYAgD0WonxFg3pmySJ0SF0jzAEAOjVmDeEkyEMAQB6Ne4ow8kQhgAAvdpIbxjiMhm6QRgCAPRq3g1bdx2sk9ttRLga9ESEIQBArzY0M1nxFrMaWlz6tuZopMtBD0QYAgD0anEWs4b3S5bEvCF0jTAEAOj18pg3hBMgDAEAer087ijDCURdGFqyZImGDRumhIQE5efna926dd32feuttzR9+nT169dPaWlpmjJlit5///0wVgsA6Any2L0eJxBVYWjlypW68847de+996qkpETTpk3T5ZdfrtLS0i77r127VtOnT9fq1au1efNmfec739GVV16pkpKSMFcOAIgk78KLuw/Vq9XljnA16GlMhmFEzX2GkyZN0nnnnafnnnvO1zZ69GhdddVVKioq8us9zjrrLM2ePVv3339/l683NzerufnY/jW1tbXKzc2Vw+FQWlra6X0AAEBEGIahsQ+8r4YWlz6461984Qi9V21trex2u1/f31EzMtTS0qLNmzeroKCgQ3tBQYHWr1/v13u43W7V1dWpb9++3fYpKiqS3W73PXJzc0+rbgBA5JlMpmOLLzJvCMeJmjBUVVUll8ul7OzsDu3Z2dmqqKjw6z2eeOIJNTQ0aNasWd32WbRokRwOh+9RVlZ2WnUDAHoG5g2hO9ZIFxAok8nU4blhGJ3aurJixQo9+OCD+p//+R9lZWV1289ms8lms512nQCAnsV7R9l2RoZwnKgJQ5mZmbJYLJ1GgSorKzuNFh1v5cqVmjdvnlatWqVLLrkklGUCAHooRobQnai5TBYfH6/8/HwVFxd3aC8uLtbUqVO7PW7FihWaO3euXnvtNV1xxRWhLhMA0EN55wyVHm5UY4szwtWgJ4maMCRJCxcu1IsvvqilS5dq27Ztuuuuu1RaWqr58+dL8sz3KSws9PVfsWKFCgsL9cQTT2jy5MmqqKhQRUWFHA5HpD4CACBCMlNsykyJl2FIuw7WR7oc9CBRFYZmz56tJ598Ug8//LDGjRuntWvXavXq1RoyZIgkqby8vMOaQy+88IKcTqduu+02DRgwwPdYsGBBpD4CACCCvLfUsy0H2ouqdYYiIZB1CgAAPduD736tl9d/o5v+eZju++6YSJeDEOqV6wwBAHC6RrFhK7pAGAIAxAwWXkRXCEMAgJjhnTNUWdesIw0tEa4GPQVhCAAQM1JsVg3qkyiJ9YZwDGEIABBT8rijDMchDAEAYgrzhnA8whAAIKZ47yjjMhm8CEMAgJjinUS9vaJOLLUHiTAEAIgxw/sly2I2qa7JqYrapkiXgx6AMAQAiCk2q0XDM5MlMW8IHoQhAEDMYRI12iMMAQBiDrfXoz3CEAAg5uRxRxnaIQwBAGKOd2Ro18F6udzcURbrCEMAgJiT2zdJCXFmNTvd2lfdEOlyEGGEIQBAzLGYTb71hrhUBsIQACAmtV98EbGNMAQAiEl5jAyhDWEIABCT8lhrCG0IQwCAmOQNQ99UN6qp1RXhahBJhCEAQEzKSrXJnhgnl9vQ7kP1kS4HEUQYAgDEJJPJxLwhSCIMAQBimPdSGXeUxTbCEAAgZnk3bN1JGIpphCEAQMw6dpmMOUOxjDAEAIhZ3jD0bc1R1Ta1RrgaRAphCAAQs+xJceqfliBJ2sUk6phFGAIAxLSRvsUXuVQWqwhDAICYNsoXhmojXAkihTAEAIhp3g1bd3CZLGYRhgAAMc07iXpHRZ0Mw4hwNYgEwhAAIKaNyE6RySQdaWzVofrmSJeDCCAMAQBiWkKcRUMzkiVJO5lEHZMIQwCAmDcyO0US84ZiFWEIABDz8vqnSeKOslhFGAIAxDzfJGq25YhJUReGlixZomHDhikhIUH5+flat27dCfuvWbNG+fn5SkhI0PDhw/X888+HqVIAQLTI6++5TLbrYJ3cbu4oizVRFYZWrlypO++8U/fee69KSko0bdo0XX755SotLe2y/969ezVjxgxNmzZNJSUl+sUvfqE77rhDb775ZpgrBwD0ZEMzkhVvMauxxaX9R45GuhyEmcmIokUVJk2apPPOO0/PPfecr2306NG66qqrVFRU1Kn/3XffrXfffVfbtm3ztc2fP19ffvmlPv30U79+Z21trex2uxwOh9LS0k7/QwAAeqTL/3OdtpXX6veFEzR9THaky8FpCuT7O2pGhlpaWrR582YVFBR0aC8oKND69eu7PObTTz/t1P/SSy/Vpk2b1Nra9e7Ezc3Nqq2t7fAAAPR+eW13lO3kjrKYEzVhqKqqSi6XS9nZHdN6dna2KioqujymoqKiy/5Op1NVVVVdHlNUVCS73e575ObmBucDAAB6NO8dZdsrCEOxJmrCkJfJZOrw3DCMTm0n699Vu9eiRYvkcDh8j7KystOsGAAQDbyTqHcShmKONdIF+CszM1MWi6XTKFBlZWWn0R+v/v37d9nfarUqIyOjy2NsNptsNltwigYARA3vhq27D9WrxelWvDXqxgtwiqLmf+n4+Hjl5+eruLi4Q3txcbGmTp3a5TFTpkzp1P+DDz7QhAkTFBcXF7JaAQDRZ2B6olJsVjndhvZWNUS6HIRR1IQhSVq4cKFefPFFLV26VNu2bdNdd92l0tJSzZ8/X5LnEldhYaGv//z587Vv3z4tXLhQ27Zt09KlS/XSSy/ppz/9aaQ+AgCghzKZTGzLEaOi5jKZJM2ePVvV1dV6+OGHVV5errFjx2r16tUaMmSIJKm8vLzDmkPDhg3T6tWrddddd+nZZ59VTk6OnnrqKV199dWR+ggAgB4sr3+qviit8cwbOjfS1SBcomqdoUhgnSEAiB0vf7JXD/7/W3XJ6Gy9eMOESJeD09Ar1xkCACDURvb3TKJmraHYQhgCAKCNd8PW0sONamxxRrgahAthCACANhkpNmWmeJZX2ckO9jGDMAQAQDssvhh7CEMAALTjXXyR2+tjB2EIAIB2RrVNot7ByFDMIAwBANAOI0OxhzAEAEA7I9rC0KG6Zh1uaIlwNQgHwhAAAO2k2KzK7ZsoiUtlsSKqtuMAACAc8rJTVXb4qK5/aaP62xOUY0/UgPQE5aQnKsfu+XOAPVED0xOVlmiVyWSKdMk4DYQhAACO871xA7V2V5VanG7tP3JU+48c7bZvUrylLRx5QlNOuic4DfS2pScqIc4SxuoRKPYmOwn2JgOA2OR0uVVZ16xyx1EdqGnSgZqjKnc06duao742f+cU9U2OV056gm80aYA9QQPSEzWwrS0r1SarhZkrwRTI9zcjQwAAdMFqMXsui6UnKn9I132aWl2+kHSgxhOQyh1H2wKTp62xxaXDDS063NCiv39b2+X7WMwmZafa2kaVEpWT3nZprm1kKSc9UX2S4rgcFyKEIQAATlFCnEXD+6VoeL+ULl83DEO1R5064DjqCUttAam8LTgdcBxVhaNJTrfhec3RJO070s3vMh+7DOcLSZ6RJe/PSfF8rZ8KzhoAACFiMplkT4qTPSlOowd0fanG5TZUVd/ceWSpLSwdqGlSVX2zmlrd2lPVoD1VDd3+vj5JcTorx65xuekaPzhd43LTldG21xq6x5yhk2DOEAAg0pqdLlU4mtrNXTqqb9uC04G24FTX7Ozy2MF9kzR+cLrG56Zr3OA+GjMgTfHW3j8/KZDvb8LQSRCGAADRoLapVaXVjfpyf41KSmu0paxG/6is79Qv3mrWWTlpGp/bxzd6NKhPYq+bj0QYCiLCEAAgWjmOtuqrtnBUUnpEW8pqdKSxtVO/zBSb79La+MHpOmdQulJs0T2ThjAURIQhAEBvYRiG9lU3qqTsiLaU1qikrEZbD9TK6e4YBcwmzx5txwJSH53ZL0Vmc/SMHhGGgogwBADozZpaXfr6gMMzelRWoy2lNfq2pvMikyk2q87NbZucndtH4wanK7MHT84mDAURYQgAEGsqa5tUUuade3REX+13qLHF1alfbt9ETzBqG0Eak5Mmm7VnrLZNGAoiwhAAINY5XW7tqqzvMPdoV1eTsy1mjclJ811aGx/BydmEoSAiDAEA0FltU6u+KnOopPSI5/JaWU2X25NkpsS3jRx5wtE5ueGZnE0YCiLCEAAAJ2cYhkoPN2pL2bG717aW16rV1TFmmEzSyKzjJmdnpcgS5MnZhKEgIgwBAHBqPJOza9sC0hGVdDM5e8rwDK24eXJQfzcbtQIAgIhLiLMof0gf5Q/pI2mYJKmyrsl3W/+W0hp9ub+m261KwoUwBAAAwiYrNUEFZ/VXwVn9JXn2Zjva2vlOtXDq/ZuTAACAHstiNkV8tWvCEAAAiGmEIQAAENMIQwAAIKYRhgAAQEwjDAEAgJhGGAIAADGNMAQAAGIaYQgAAMS0qAlDR44c0fXXXy+73S673a7rr79eNTU13fZvbW3V3XffrbPPPlvJycnKyclRYWGhDhw4EL6iAQBAjxc1YWjOnDnasmWL3nvvPb333nvasmWLrr/++m77NzY26osvvtAvf/lLffHFF3rrrbe0c+dOzZw5M4xVAwCAni4qdq3ftm2bxowZow0bNmjSpEmSpA0bNmjKlCnavn278vLy/Hqfzz//XBMnTtS+ffs0ePBgv45h13oAAKJPIN/fUTEy9Omnn8put/uCkCRNnjxZdrtd69ev9/t9HA6HTCaT0tPTu+3T3Nys2traDg8AANB7RUUYqqioUFZWVqf2rKwsVVRU+PUeTU1NuueeezRnzpwTJsSioiLfvCS73a7c3NxTrhsAAPR8Ed0m9sEHH9RDDz10wj6ff/65JMlkMnV6zTCMLtuP19raqmuvvVZut1tLliw5Yd9FixZp4cKFvucOh0ODBw9mhAgAgCji/d72ZzZQRMPQ7bffrmuvvfaEfYYOHaqvvvpKBw8e7PTaoUOHlJ2dfcLjW1tbNWvWLO3du1cffvjhSa8b2mw22Ww233PvyWSECACA6FNXVye73X7CPhENQ5mZmcrMzDxpvylTpsjhcOizzz7TxIkTJUkbN26Uw+HQ1KlTuz3OG4R27dqljz76SBkZGQHXmJOTo7KyMqWmpvo1ChWI2tpa5ebmqqysjMnZIcR5Dg/Oc3hwnsOD8xw+oTrXhmGorq5OOTk5J+0b0TDkr9GjR+uyyy7Tj3/8Y73wwguSpJtvvlnf/e53O9xJNmrUKBUVFen73/++nE6nrrnmGn3xxRf63//9X7lcLt/8or59+yo+Pt6v3202mzVo0KDgf6h20tLS+I8tDDjP4cF5Dg/Oc3hwnsMnFOf6ZCNCXlExgVqSli9frrPPPlsFBQUqKCjQOeeco1deeaVDnx07dsjhcEiS9u/fr3fffVf79+/XuHHjNGDAAN8jkDvQAABA7xYVI0OSZzTn1VdfPWGf9pOkhg4d6tekKQAAENuiZmSoN7LZbHrggQc6TNhG8HGew4PzHB6c5/DgPIdPTzjXUbECNQAAQKgwMgQAAGIaYQgAAMQ0whAAAIhphCEAABDTCEMhtmTJEg0bNkwJCQnKz8/XunXrTth/zZo1ys/PV0JCgoYPH67nn38+TJVGt0DO81tvvaXp06erX79+SktL05QpU/T++++HsdroFejfZ69PPvlEVqtV48aNC22BvUSg57m5uVn33nuvhgwZIpvNpjPOOENLly4NU7XRK9DzvHz5cp177rlKSkrSgAEDdOONN6q6ujpM1UantWvX6sorr1ROTo5MJpPeeeedkx4Tke9BAyHzxz/+0YiLizN+//vfG1u3bjUWLFhgJCcnG/v27euy/549e4ykpCRjwYIFxtatW43f//73RlxcnPHGG2+EufLoEuh5XrBggfH4448bn332mbFz505j0aJFRlxcnPHFF1+EufLoEuh59qqpqTGGDx9uFBQUGOeee254io1ip3KeZ86caUyaNMkoLi429u7da2zcuNH45JNPwlh19An0PK9bt84wm83Gf/7nfxp79uwx1q1bZ5x11lnGVVddFebKo8vq1auNe++913jzzTcNScbbb799wv6R+h4kDIXQxIkTjfnz53doGzVqlHHPPfd02f/nP/+5MWrUqA5tt9xyizF58uSQ1dgbBHqeuzJmzBjjoYceCnZpvcqpnufZs2cb9913n/HAAw8QhvwQ6Hn+05/+ZNjtdqO6ujoc5fUagZ7n3/zmN8bw4cM7tD311FPGoEGDQlZjb+NPGIrU9yCXyUKkpaVFmzdvVkFBQYf2goKCbrcD+fTTTzv1v/TSS7Vp0ya1traGrNZodirn+Xhut1t1dXXq27dvKErsFU71PC9btky7d+/WAw88EOoSe4VTOc/vvvuuJkyYoF//+tcaOHCgRo4cqZ/+9Kc6evRoOEqOSqdynqdOnar9+/dr9erVMgxDBw8e1BtvvKErrrgiHCXHjEh9D0bNdhzRpqqqSi6XS9nZ2R3as7OzfRvGHq+ioqLL/k6nU1VVVRowYEDI6o1Wp3Kej/fEE0+ooaFBs2bNCkWJvcKpnOddu3bpnnvu0bp162S18n81/jiV87xnzx59/PHHSkhI0Ntvv62qqirdeuutOnz4MPOGunEq53nq1Klavny5Zs+eraamJjmdTs2cOVNPP/10OEqOGZH6HmRkKMRMJlOH54ZhdGo7Wf+u2tFRoOfZa8WKFXrwwQe1cuVKZWVlhaq8XsPf8+xyuTRnzhw99NBDGjlyZLjK6zUC+fvsdrtlMpm0fPlyTZw4UTNmzNDixYv18ssvMzp0EoGc561bt+qOO+7Q/fffr82bN+u9997T3r17NX/+/HCUGlMi8T3IP9dCJDMzUxaLpdO/MiorKzulXq/+/ft32d9qtSojIyNktUazUznPXitXrtS8efO0atUqXXLJJaEsM+oFep7r6uq0adMmlZSU6Pbbb5fk+dI2DENWq1UffPCBLrroorDUHk1O5e/zgAEDNHDgQNntdl/b6NGjZRiG9u/frxEjRoS05mh0Kue5qKhI559/vn72s59Jks455xwlJydr2rRpevTRRxm5D5JIfQ8yMhQi8fHxys/PV3FxcYf24uJiTZ06tctjpkyZ0qn/Bx98oAkTJiguLi5ktUazUznPkmdEaO7cuXrttde45u+HQM9zWlqa/va3v2nLli2+x/z585WXl6ctW7Zo0qRJ4So9qpzK3+fzzz9fBw4cUH19va9t586dMpvNGjRoUEjrjVancp4bGxtlNnf8yrRYLJKOjVzg9EXsezCk07NjnPfWzZdeesnYunWrceeddxrJycnGN998YxiGYdxzzz3G9ddf7+vvvaXwrrvuMrZu3Wq89NJL3Frvh0DP82uvvWZYrVbj2WefNcrLy32PmpqaSH2EqBDoeT4ed5P5J9DzXFdXZwwaNMi45pprjK+//tpYs2aNMWLECOOmm26K1EeICoGe52XLlhlWq9VYsmSJsXv3buPjjz82JkyYYEycODFSHyEq1NXVGSUlJUZJSYkhyVi8eLFRUlLiW8Kgp3wPEoZC7NlnnzWGDBlixMfHG+edd56xZs0a32s33HCDccEFF3To/9e//tUYP368ER8fbwwdOtR47rnnwlxxdArkPF9wwQWGpE6PG264IfyFR5lA/z63RxjyX6Dnedu2bcYll1xiJCYmGoMGDTIWLlxoNDY2hrnq6BPoeX7qqaeMMWPGGImJicaAAQOMH/7wh8b+/fvDXHV0+eijj074/7c95XvQZBiM7wEAgNjFnCEAABDTCEMAACCmEYYAAEBMIwwBAICYRhgCAAAxjTAEAABiGmEIAADENMIQAACIaYQhAD3WhRdeqDvvvLNH/o6hQ4fqySefDHo9AMKPMAQAAGIaYQgAAMQ0whCAqPDqq69qwoQJSk1NVf/+/TVnzhxVVlb6Xv/rX/8qk8mk999/X+PHj1diYqIuuugiVVZW6k9/+pNGjx6ttLQ0XXfddWpsbOzw3k6nU7fffrvS09OVkZGh++67T+23baysrNSVV16pxMREDRs2TMuXL+9U3+LFi3X22WcrOTlZubm5uvXWW1VfXx+6EwIgaAhDAKJCS0uLHnnkEX355Zd65513tHfvXs2dO7dTvwcffFDPPPOM1q9fr7KyMs2aNUtPPvmkXnvtNf3f//2fiouL9fTTT3c45g9/+IOsVqs2btyop556Sr/73e/04osv+l6fO3euvvnmG3344Yd64403tGTJkg5BTJLMZrOeeuop/f3vf9cf/vAHffjhh/r5z38eknMBIMhOf+N7AAiNCy64wFiwYEGXr3322WeGJKOurs4wDMP46KOPDEnGn//8Z1+foqIiQ5Kxe/duX9stt9xiXHrppR1+x+jRow232+1ru/vuu43Ro0cbhmEYO3bsMCQZGzZs8L2+bds2Q5Lxu9/9rtvaX3/9dSMjIyOgzwsgMhgZAhAVSkpK9L3vfU9DhgxRamqqLrzwQklSaWlph37nnHOO7+fs7GwlJSVp+PDhHdqOH9WZPHmyTCaT7/mUKVO0a9cuuVwubdu2TVarVRMmTPC9PmrUKKWnp3d4j48++kjTp0/XwIEDlZqaqsLCQlVXV6uhoeF0PzqAECMMAejxGhoaVFBQoJSUFL366qv6/PPP9fbbb0vyXD5rLy4uzvezyWTq8Nzb5na7/f7dRtvcofZh6Xj79u3TjBkzNHbsWL355pvavHmznn32WUlSa2ur378LQGRYI10AAJzM9u3bVVVVpccee0y5ubmSpE2bNgXt/Tds2NDp+YgRI2SxWDR69Gg5nU5t2rRJEydOlCTt2LFDNTU1vv6bNm2S0+nUE088IbPZ82/M119/PWj1AQgtRoYA9HiDBw9WfHy8nn76ae3Zs0fvvvuuHnnkkaC9f1lZmRYuXKgdO3ZoxYoVevrpp7VgwQJJUl5eni677DL9+Mc/1saNG7V582bddNNNSkxM9B1/xhlnyOl0+up75ZVX9PzzzwetPgChRRgC0OP169dPL7/8slatWqUxY8boscce029/+9ugvX9hYaGOHj2qiRMn6rbbbtNPfvIT3Xzzzb7Xly1bptzcXF1wwQX613/9V918883KysryvT5u3DgtXrxYjz/+uMaOHavly5erqKgoaPUBCC2TYbRbTAMAACDGMDIEAABiGmEIAADENMIQAACIaYQhAAAQ0whDAAAgphGGAABATCMMAQCAmEYYAgAAMY0wBAAAYhphCAAAxDTCEAAAiGn/D6Nc958He9KaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -244,7 +409,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The free energy difference between bcc and fcc at 300 K is 0.9558411678020047 eV\n" + "The free energy difference between bcc and fcc at 300 K is 0.9565999950953374 eV\n" ] } ], @@ -265,59 +430,52 @@ "id": "a992c792-8fe8-41be-ba54-cc8f726cee5f", "metadata": {}, "source": [ - "[Metadynamics](https://en.wikipedia.org/wiki/Metadynamics) is a simulation method which allows for the free energy distribution along a collective variable defined by the user. In mamonca, you can use the total magnetization as the collective variable, meaning you can obtain the free energy distribution along the total magnetization. For this, you only need to call `set_metadynamics` before `run`, where you must also specify the maximum magnetization value. In order to obtain a reliable result, you should also test the robustness by varying `energy_increment` and `length_scale` (cf. [Wikipedia](https://en.wikipedia.org/wiki/Metadynamics#Algorithm), where `energy_increment` is called $\\omega$ and `length_scale` is called $\\sigma$)" + "[Metadynamics](https://en.wikipedia.org/wiki/Metadynamics) is a simulation method which allows for the free energy distribution along a collective variable defined by the user. In mamonca, you can use the total magnetization as the collective variable, meaning you can obtain the free energy distribution along the total magnetization. For this, you only need to call `set_metadynamics` before `run`, where you must also specify the maximum magnetization value. In order to obtain a reliable result, you should also test the robustness by varying `energy_increment` and `length_scale` (cf. [Wikipedia](https://en.wikipedia.org/wiki/Metadynamics#Algorithm), where `energy_increment` is called $\\omega$ and `length_scale` is called $\\sigma$)\n", + "\n", + "Here, we run 10 calculations and get the average to ensure that the results are representative." ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 19, "id": "0dee5e1a", "metadata": {}, "outputs": [], "source": [ "# Create bcc structure (which is the ground state of iron)\n", "bcc = StructureFactory().bulk(\"Fe\", cubic=True).repeat(10)\n", - "\n", "neigh = bcc.get_neighbors(num_neighbors=8)" ] }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 20, "id": "aa94c95b", "metadata": {}, "outputs": [], "source": [ "J = 0.05 * neigh.get_shell_matrix()[0]\n", "\n", - "mc = MC(len(bcc))\n", - "mc.set_heisenberg_coeff(J)\n", - "temperature = 1000\n", - "mc.set_metadynamics(max_range=1)\n", - "mc.run(temperature=temperature, number_of_iterations=100000)\n", - "\n", - "meta = mc.get_metadynamics_free_energy()" + "F_list = []\n", + "for _ in range(10):\n", + " mc = MC(len(bcc))\n", + " mc.set_heisenberg_coeff(J)\n", + " temperature = 1000\n", + " mc.set_metadynamics(max_range=1)\n", + " mc.run(temperature=temperature, number_of_iterations=100000)\n", + " meta = mc.get_metadynamics_free_energy()\n", + " F_list.append(meta[\"free_energy\"])" ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 22, "id": "7abfdf91", "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGwCAYAAACpYG+ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQlElEQVR4nO3dd3xT5eIG8CdJ03TPlO5JKVBWoWW0bJkXRJErwuWKwAWUiwiCKCJcliI/xc1VUFRELwruzQaRDYWyW6CF0tK9d9M2Ob8/SiOlLTQlyWmS5/v55CM9OUkfDpU8vO97zpEIgiCAiIiIyAJIxQ5AREREZCwsPkRERGQxWHyIiIjIYrD4EBERkcVg8SEiIiKLweJDREREFoPFh4iIiCyGldgBWhuNRoP09HQ4OjpCIpGIHYeIiIiaQRAElJSUwMfHB1Jp0+M6LD53SE9Ph7+/v9gxiIiIqAVSU1Ph5+fX5PMsPndwdHQEUHvgnJycRE5DREREzVFcXAx/f3/t53hTWHzuUDe95eTkxOJDRERkYu61TIWLm4mIiMhisPgQERGRxWDxISIiIovB4kNEREQWwyyLzwcffIDg4GDY2NggMjISBw8eFDsSERERtQJmV3y2bduGZ599FkuWLEFcXBz69++Pv/3tb0hJSRE7GhEREYlMIgiCIHYIferduzd69OiB9evXa7d17NgRY8eOxZo1a+75+uLiYjg7O6OoqIinsxMREZmI5n5+m9WIT1VVFU6dOoXhw4fX2z58+HAcOXKk0deoVCoUFxfXexAREZF5Mqvik5ubC7VaDU9Pz3rbPT09kZmZ2ehr1qxZA2dnZ+2Dt6sgIiIyX2ZVfOrcedVGQRCavJLj4sWLUVRUpH2kpqYaIyIRERGJwKxuWaFUKiGTyRqM7mRnZzcYBaqjUCigUCiMEY+IiIhEZlYjPtbW1oiMjMTu3bvrbd+9ezdiYmJESkVERESthVmN+ADAggULMHnyZERFRSE6OhofffQRUlJSMGvWLLGjERERWbTKajXiM4rRPcBVtAxmV3wmTJiAvLw8rFq1ChkZGejcuTN+//13BAYGih2NiIjIomSXVOJUcgFibxTg1I0CXEwvQrVawKmlQ+HuIM4yE7O7js/94nV8iIiIWqZMVYPj1/Nw8GouDl7NRWJ2aYN9PBwV2PhEFCL8XfT6vZv7+W12Iz5ERERkPJlFldh5MRM7LmQi9kY+qtV/jadIJEAHLydEBrogKtANkYGu8HO1bfJMa2Ng8SEiIiKdZBRV4Ocz6dhxMRNxKYX1nvN3s0W/UA8MaKdETFslnO3k4oRsAosPERER3ZOqRo3dl7LwdexNHLyag9sXykQGumJkJy8MC/dEkNJevJDNwOJDRERETUrJK8enh6/jxzNpKCyv1m7vFeyGMd18MDzcE55ONiIm1A2LDxERETUQl1KAjQevYceFTGhuje54O9vg0Ug/PBrph0D31j2y0xQWHyIiIgJQe4unP6/m4r/7ruJkcoF2+8AwD0zrG4T+7Twgk4q3MFkfWHyIiIgI524W4v+2J+BIUh4AQC6T4OEIX8zoH4wOXuZzeRcWHyIiIguWnFuGtbsu47dzGQAAa5kUj/cJxJMDQuDlbDprd5qLxYeIiMgCqWrUeH9fItYfSEK1WoBEAjwS4Yv5w8Lg72YndjyDYfEhIiKyMCeT8/Hid+eQlFMGABgQ5oEXR3ZAuI/5TGk1hcWHiIjIQhRXVuO17QnYcjwFAKB0UGDlQ50wqouXqFdTNiYWHyIiIgtwJrUQT285jbTCCgDAxJ7+WPy3jq3uysqGxuJDRERkxgRBwKbDyVizPR7VagEBbnZ47e9dEd3WXexoomDxISIiMlNFFdVY9O057LiYCQD4W2cvvPZoVzjZWNYoz+1YfIiIiMzQ5cwSzPj8JFLzKyCXSbB0dDieiA60mLU8TWHxISIiMjNHk/Lw5BexKKmsgb+bLd6f1ANd/VzEjtUqsPgQERGZkZ/OpOH5b86hSq1BzyBXbHwiCi521mLHajVYfIiIiMyAIAj46M9rWLM9AQAwqosX3nosAjZymcjJWhcWHyIiIhMnCAJW/XoJmw4nAwD+1TcYS0d3hNTEbyhqCCw+REREJkwQBLz8a7y29Cwd3REz+oeIG6oVY/EhIiIyUYIg4LUdl/Hp4esAgNf+3gUTegaInKp1k4odgIiIiFrmnT1XseFAEgDg5Yc7sfQ0A4sPERGRCXp/fyLe3XsVQO301uToIHEDmQgWHyIiIhPzv2M3sHbnZQDACyPbc02PDlh8iIiITMjBqzlY/vNFAMDcB0Ixe1CoyIlMC4sPERGRiUjMLsXsLaeh1gh4pLsv5g8LEzuSyWHxISIiMgEFZVWYsfkkSiprEBnoijXjulj8fbdagsWHiIiolauq0eDfW04hOa8cvi62+HByJK/I3EIsPkRERK3c8p8v4ti1fNhby/DJ1CgoHRRiRzJZLD5ERESt2A9xN/HViRRIJMB7/+iODl5OYkcyaSw+RERErdT13DIs/eECAGDuA+0wpKOnyIlMH4sPERFRK1RVo8Hcr+JQVqVGryA3PPMAT1vXBxYfIiKiVmjtzgScTyuCs60c70yMgJWMH9n6wKNIRETUyuy/nI2NB2tvPLr20a7wcbEVOZH5YPEhIiJqRbKLK7Hw67MAgCeiAzG8k5fIicwLiw8REVErIQgCXvrhPPLKqtDByxEvjeoodiSzw+JDRETUSvx2PgN74rMhl0nw7sTuvEihAbD4EBERtQKF5VVYcevmo/8eFIr2Xo4iJzJPLD5EREStwKu/xyO3tAptPezx9OC2YscxWyw+REREIjucmIuvY28CAF77e1corDjFZSgsPkRERCKqqFLjpR/OAwAm9wlEVJCbyInMG4sPERGRiN7ZewU38srh5WSDF0a2FzuO2WPxISIiEsnlzBJ8fOtChS+P7QxHG7nIicwfiw8REZEIBEHAK79dglojYEQnTwwL5w1IjYHFh4iISAR/XM7Bwau5sJZJeaFCIzKr4hMUFASJRFLv8eKLL4odi4iIqJ5qtQav/HYJADC1bxAC3e1FTmQ5rMQOoG+rVq3CzJkztV87ODiImIaIiKihL4+nICmnDG721pjzQKjYcSyK2RUfR0dHeHk1/4ZuKpUKKpVK+3VxcbEhYhEREQEAisqr8faeKwCA+cPC4MQFzUZlVlNdAPDaa6/B3d0dERERWL16Naqqqu66/5o1a+Ds7Kx9+Pv7GykpERFZovf2XUVheTXCPB3wj578zDE2iSAIgtgh9OXtt99Gjx494OrqihMnTmDx4sV4+OGH8fHHHzf5msZGfPz9/VFUVAQnJydjxCYiIgtxPbcMw98+gGq1gM3/6oWBYR5iRzIbxcXFcHZ2vufnd6uf6lqxYgVWrlx5131OnjyJqKgozJ8/X7uta9eucHV1xaOPPqodBWqMQqGAQqHQa2YiIqLGvL4jAdVqAYPbe7D0iKTVF585c+Zg4sSJd90nKCio0e19+vQBACQmJjZZfIiIiIzhQloRtl/IhEQCLObp66Jp9cVHqVRCqVS26LVxcXEAAG9vb31GIiIi0tk7e64CAB7q5oMwT0eR01iuVl98muvo0aM4duwYBg8eDGdnZ5w8eRLz58/HQw89hICAALHjERGRBTt3sxB74rMglQBzh7QTO45FM5vio1AosG3bNqxcuRIqlQqBgYGYOXMmXnjhBbGjERGRhasb7Rkb4Yu2Hry+nJjMpvj06NEDx44dEzsGERFRPXEpBdiXkA2ZVIJnONojOrO7jg8REVFr8vat0Z5x3X0RrOStKcTG4kNERGQgscn5+PNKDqykEjzzAEd7WgMWHyIiIgOpuzXFo5F+CHC3EzkNASw+REREBhGbnI/DiXmQyyR4ejBvRNpasPgQEREZwIYD1wAA47r7wd+Noz2tBYsPERGRniVml2JPfBYkEuDJgSFix6HbsPgQERHp2cY/a0d7hnb05HV7WhkWHyIiIj3KLq7ED3FpAICnBnC0p7Vh8SEiItKjz44ko0qtQY8AF0QFuYkdh+7A4kNERKQnpaoa/O/YDQDAUwPbipyGGsPiQ0REpCdbT6SguLIGIUp7DOvoKXYcagSLDxERkR5UqzX49NB1AMCM/iGQSiUiJ6LGsPgQERHpwW/nMpBeVAmlgzXG9fAVOw41gcWHiIjoPgmCgI0Ha09hnxoTBBu5TORE1BQWHyIiovt0OqUQF9OLobCS4p+9A8WOQ3fB4kNERHSfvjiaDAAY080HrvbW4oahu2LxISIiug+5pSr8fj4TAPBENEd7WjsWHyIiovuw7WQqqtQadPN3QVc/F7Hj0D2w+BAREbVQjVqDLbcuWPhEH472mAIWHyIiohbam5CN9KJKuNlbY3RXb7HjUDOw+BAREbXQF0drR3sei/LnKewmgsWHiIioBZJySnEoMRcSCfDP3gFix6FmYvEhIiJqgbrRniEd2sDfzU7kNNRcLD5EREQ6KlPV4LtTNwEAk6ODxA1DOmHxISIi0tHPZ9NRoqpBkLsd+ocqxY5DOmDxISIi0tG2k6kAgH/0CuBd2E0Miw8REZEOrmSV4ExqIaykEozr4Sd2HNIRiw8REZEOvr412vNAhzbwcFSInIZ0xeJDRETUTFU1Gnwflwag9to9ZHpYfIiIiJppX0IW8suq0MZRgUHtPcSOQy3A4kNERNRMdYua/x7pBysZP0JNEf/UiIiImiGzqBIHruQAAMZHclGzqWLxISIiaobvTt+ERgB6BbkhxMNB7DjUQiw+RERE96DRCPg6tnaa67GeXNRsylh8iIiI7uH49XzcyCuHg8IKo7p4iR2H7gOLDxER0T18c2u0Z0w3b9hZW4mchu4Hiw8REdFdlKpq8PuFDADAeF67x+Sx+BAREd3FzguZqKzWIERpj+7+LmLHofvE4kNERHQXP56pvVLz2O6+kEh4Q1JTx+JDRETUhKziShxOzAUAjI3wFTkN6QOLDxERURN+OZsOjQBEBroiwN1O7DikByw+RERETfgh7q9pLjIPLD5ERESNuJJVgovpxZDLJHiwi7fYcUhPWHyIiIga8eOt0Z5B7dvA1d5a5DSkLyw+REREd9BoBPx0Jh0A8AinucyKyRSf1atXIyYmBnZ2dnBxcWl0n5SUFIwZMwb29vZQKpWYO3cuqqqqjBuUiIhM3onkfKQVVsBRYYUHOrQROw7pkclcd7uqqgrjx49HdHQ0PvnkkwbPq9VqjB49Gh4eHjh06BDy8vIwZcoUCIKAdevWiZCYiIhMVd0016gu3rCRy0ROQ/pkMsVn5cqVAIDPPvus0ed37dqFS5cuITU1FT4+PgCAN998E1OnTsXq1avh5OTU6OtUKhVUKpX26+LiYv0GJyIik1JZrcZv52tvUcGzucyPyUx13cvRo0fRuXNnbekBgBEjRkClUuHUqVNNvm7NmjVwdnbWPvz9eR8WIiJLtj8hGyWVNfB2tkHvYDex45CemU3xyczMhKenZ71trq6usLa2RmZmZpOvW7x4MYqKirSP1NRUQ0clIqJW7JdztYuaH4rwgVTKW1SYG1GLz4oVKyCRSO76iI2Nbfb7NXYPFUEQ7npvFYVCAScnp3oPIiKyTGWqGuxLyAYAjOnqc4+9yRSJusZnzpw5mDhx4l33CQoKatZ7eXl54fjx4/W2FRQUoLq6usFIEBERUWP2xGehslqDIHc7dPLhP4TNkajFR6lUQqlU6uW9oqOjsXr1amRkZMDbu/YKm7t27YJCoUBkZKRevgcREZm3X8/VLmp+sKsP78RupkzmrK6UlBTk5+cjJSUFarUaZ86cAQCEhobCwcEBw4cPR3h4OCZPnoy1a9ciPz8fCxcuxMyZMzl9RURE91RcWY0Dl3MAAA924y0qzJXJFJ9ly5Zh8+bN2q+7d+8OANi/fz8GDRoEmUyG3377DbNnz0bfvn1ha2uLSZMm4Y033hArMhERmZDdF7NQpdYgtI0D2ns6ih2HDEQiCIIgdojWpLi4GM7OzigqKuJIERGRBfnXZyexLyEbzw5th2eHhokdh3TU3M9vszmdnYiIqKWKyqtx8Oqtaa6unOYyZyw+RERk8XZezES1WkAHL0eEtuE0lzlj8SEiIotXd9FCjvaYPxYfIiKyaHmlKhxJygNQexo7mbdmF58ff/wRarXakFmIiIiMbsfFTKg1Ajr7OiFIaS92HDKwZhefRx99FL6+vli0aBESEhIMmYmIiMhofj3710ULyfw1u/ikpKTgmWeewQ8//IBOnTqhX79+2LRpE8rKygyZj4iIyGByS1U4fr12mmt0F67vsQTNLj4+Pj5YsmQJrly5gn379qFt27aYO3cuvL29MWPGDBw9etSQOYmIiPRu18UsaASgq58z/N3sxI5DRtCixc0DBw7E5s2bkZGRgbfeegvx8fHo168fOnXqpO98REREBrP9Qu0018jOXiInIWO5r1tWODg4YPDgwUhOTkZCQgKuXLmir1xEREQGVVRejaO3zub6W2dOc1mKFo34lJeXY/PmzRg4cCDCwsKwbds2LFiwAMnJyXqOR0REZBi747NQo6m9aGEwz+ayGDqN+Bw+fBiffvopvvnmG9TU1GDcuHHYs2cPBg8ebKh8REREBrGD01wWqdnFJywsDElJSejevTtee+01TJo0Cc7OzobMRkREZBClqhr8eTUXAIuPpWl28Rk5ciSmT5+Obt26GTIPERGRwe1LyEZVjQbBSnu09+S9uSxJs4vPe++9p/11TU0N/vjjDyQlJWHSpElwdHREeno6nJyc4ODgYJCgRERE+nL7NJdEIhE5DRmTzmd13bhxAyNHjkRKSgpUKhWGDRsGR0dHvP7666isrMSGDRsMkZOIiEgvKqrU2J+QAwD4G6e5LI7OZ3XNmzcPUVFRKCgogK2trXb7I488gr179+o1HBERkb4duJKDimo1fF1s0cWXa1Utjc4jPocOHcLhw4dhbW1db3tgYCDS0tL0FoyIiMgQOM1l2XQe8dFoNI3epf3mzZtwdOQCMSIiar1UNWrsjc8GwGkuS6Vz8Rk2bBjeeecd7dcSiQSlpaVYvnw5Ro0apc9sREREenUkKQ8lqhq0cVSgR4Cr2HFIBDpPdb399tsYPHgwwsPDUVlZiUmTJuHq1atQKpX46quvDJGRiIhIL3ZeyAQAjOjkBamU01yWSOfi4+PjgzNnzmDr1q04deoUNBoNpk+fjn/+85/1FjsTERG1JmqNgN2XsgDwooWWrEU3KbW1tcW0adMwbdo0fechIiIyiNMpBcgrq4KTjRV6BbuJHYdE0qKblBIREZmaXRdrp7mGdPSEXMaPP0vFP3kiIjJ7giBg161pruHhniKnITGx+BARkdm7klWKG3nlsLaSYkCYh9hxSEQsPkREZPbqprkGtFPCXtGi5a1kJnQuPlOnTsWff/5piCxEREQG8dc0F8/msnQ6F5+SkhIMHz4c7dq1w6uvvsrbVBARUauWVliB82lFkEqAIR3biB2HRKZz8fnuu++QlpaGOXPm4JtvvkFQUBD+9re/4dtvv0V1dbUhMhIREbXY7lvTXFGBbnB3UIichsTWojU+7u7umDdvHuLi4nDixAmEhoZi8uTJ8PHxwfz583H16lV95yQiImoR7TRXJ57NRfe5uDkjIwO7du3Crl27IJPJMGrUKFy8eBHh4eF4++239ZWRiIioRQrLq3D8ej4Aru+hWjoXn+rqanz33Xd48MEHERgYiG+++Qbz589HRkYGNm/ejF27duGLL77AqlWrDJGXiIio2fYlZEOtEdDByxEB7nZix6FWQOdz+ry9vaHRaPCPf/wDJ06cQERERIN9RowYARcXFz3EIyIiarldF+umuTjaQ7VadHf28ePHw8bGpsl9XF1dcf369fsKRkREdD8qq9U4cCUHAK/WTH/RufhMnjzZEDmIiIj06tDVXFRUq+HrYotOPk5ix6FWQufiM27cuEa3SyQS2NjYIDQ0FJMmTUL79u3vOxwREVFL7YmvneYaFu4JiUQichpqLXRe3Ozk5IR9+/bh9OnT2h+kuLg47Nu3DzU1Ndi2bRu6deuGw4cP6z0sERFRc2g0AvbEZwMAhnbkNBf9RecRHy8vL0yaNAn//e9/IZXW9iaNRoN58+bB0dERW7duxaxZs7Bo0SIcOnRI74GJiIju5czNQuSWquCosEKvYDex41ArovOIzyeffIJnn31WW3oAQCqV4plnnsFHH30EiUSCOXPm4MKFC3oNSkRE1Fx7bl20cFCHNrC24v246S86/zTU1NQgISGhwfaEhASo1WoAgI2NDedTiYhINLtvFZ+hvDcX3aFFZ3VNnz4dL730Enr27AmJRIITJ07g1VdfxRNPPAEAOHDgADp16qT3sERERPeSnFuGq9mlsJJKMKg9iw/V16Lr+Hh6euL1119HVlZto/b09MT8+fOxaNEiAMDw4cMxcuRI/SYlIiJqhrqzuXqHuMHZVi5yGmptdCo+NTU12LJlC6ZPn44lS5aguLgYQO2ZXrcLCAjQX0IiIiId/DXNxbO5qCGd1vhYWVnh3//+N1QqFYDawnNn6TGU1atXIyYmBnZ2dk3eDkMikTR4bNiwwSj5iIhIfAVlVYi9UQCAxYcap/NUV+/evREXF4fAwEBD5GlSVVUVxo8fj+joaHzyySdN7rdp06Z602zOzs7GiEdERK3A/st/3ZTU3403JaWGdC4+s2fPxnPPPYebN28iMjIS9vb29Z7v2rWr3sLdbuXKlQCAzz777K77ubi4wMuLN6MjIrJEt1+tmagxOhefCRMmAADmzp2r3SaRSCAIAiQSifaUdrHMmTMHM2bMQHBwMKZPn44nn3yy3jWH7qRSqbRTdwC065aIiMi0qGrUOHC59qaknOaipuhcfFrzXddffvllDBkyBLa2tti7dy+ee+455ObmYunSpU2+Zs2aNdrRJCIiMl1Hk/JQVqWGp5MCXXy5zIEap3Px0efanhUrVtyzdJw8eRJRUVHNer/bC05ERAQAYNWqVXctPosXL8aCBQu0XxcXF8Pf379Z34+IiFqPummuIR09IZXyIrrUOJ2LDwB88cUX2LBhA65fv46jR48iMDAQ77zzDoKDg/Hwww83+33mzJmDiRMn3nWfoKCglkQEAPTp0wfFxcXIysqCp2fjw54KhQIKhaLF34OIiMQnCAL2XKq7KSkvWkhN07n4rF+/HsuWLcOzzz6L1atXa9f0uLi44J133tGp+CiVSiiVSl0jNFtcXBxsbGyaPP2diIjMw8X0YmQWV8JWLkNMW8N9rpDp07n4rFu3Dhs3bsTYsWPxf//3f9rtUVFRWLhwoV7D3S4lJQX5+flISUmBWq3GmTNnAAChoaFwcHDAL7/8gszMTERHR8PW1hb79+/HkiVL8OSTT3JEh4jIzNVNcw0IU8JGLhM5DbVmLVrc3L179wbbFQoFysrK9BKqMcuWLcPmzZu1X9dl2L9/PwYNGgS5XI4PPvgACxYsgEajQUhICFatWoWnn37aYJmIiKh1uH19D9Hd6Fx8goODcebMmQaLnLdv347w8HC9BbvTZ599dtdr+IwcOZL3ByMiskAZRRW4kFYMiQR4oAPX99Dd6Vx8nn/+eTz99NOorKyEIAg4ceIEvvrqK6xZswYff/yxITISERE1aW987aLmHgGuUDpwaQPdnc7FZ9q0aaipqcELL7yA8vJyTJo0Cb6+vnj33XfveYYWERGRvv01zcXRHrq3Fp3OPnPmTMycORO5ubnQaDRo04Y/bEREZHxlqhocScwDAAzj+h5qhhYVnzqGPBWdiIjoXg5ezUWVWoNAdzuEtnEQOw6ZgKZvYtWErKwsTJ48GT4+PrCysoJMJqv3ICIiMhbtNFcHT0gkvFoz3ZvOIz5Tp05FSkoK/vOf/8Db25s/aEREJAq1RsC+hFtXaw7nkgtqHp2Lz6FDh3Dw4EHtvbCIiIjEcCa1APllVXCysULPIDex45CJ0Hmqy9/fH4IgGCILERFRs+2+dW+uwR3aQC7T+eOMLJTOPynvvPMOXnzxRSQnJxsgDhERUfPwas3UEjpPdU2YMAHl5eVo27Yt7OzsIJfL6z2fn5+vt3BERESNuZFXhsTsUlhJJRgY5iF2HDIhOhefd955xwAxiIiImm/3pdrRnl7BbnC2ld9jb6K/6Fx8pkyZYogcREREzVY3zTUsnNNcpJsWrQZLSkrC0qVL8Y9//APZ2bWLy3bs2IGLFy/qNRwREdGdCsurcDK5AAAwlOt7SEc6F58DBw6gS5cuOH78OL7//nuUlpYCAM6dO4fly5frPSAREdHt/ricA7VGQAcvR/i72Ykdh0yMzsXnxRdfxCuvvILdu3fD2tpau33w4ME4evSoXsMRERHdafetaS6O9lBL6Fx8zp8/j0ceeaTBdg8PD+Tl5eklFBERUWOqajQ4cDkHADCU63uoBXQuPi4uLsjIyGiwPS4uDr6+vnoJRURE1Jjj1/NQqqqBh6MCXX2dxY5DJkjn4jNp0iQsWrQImZmZkEgk0Gg0OHz4MBYuXIgnnnjCEBmJiIgAAHsu1d2UtA2kUt4rknSnc/FZvXo1AgIC4Ovri9LSUoSHh2PAgAGIiYnB0qVLDZGRiIgIgiBgT/ytm5JyfQ+1kM7X8ZHL5diyZQtefvllnD59GhqNBt27d0e7du0MkY+IiAgAEJ9RgrTCCtjIpegbqhQ7DpkonYtPnZCQEISEhOgzCxERUZPqLlrYL9QDttYykdOQqeLtbImIyCT8dbXmNiInIVPG4kNERK1eZlElzt0sgkQCPNCB63uo5Vh8iIio1dubUDvaE+HvAg9HhchpyJSx+BARUatXdxo7z+ai+9Wi4nPw4EE8/vjjiI6ORlpaGgDgiy++wKFDh/QajoiIqFRVg8NJtXcG4N3Y6X7pXHy+++47jBgxAra2toiLi4NKpQIAlJSU4NVXX9V7QCIismx/XslBVY0GQe52aNfGQew4ZOJ0Lj6vvPIKNmzYgI0bN0Iul2u3x8TE4PTp03oNR0REtPtS3dlcnpBIeLVmuj86F5/Lly9jwIABDbY7OTmhsLBQH5mIiIgAANVqDfZqT2P3EjkNmQOdi4+3tzcSExMbbD906BAvaEhERHp18no+iitr4GZvjchAV7HjkBnQufg89dRTmDdvHo4fPw6JRIL09HRs2bIFCxcuxOzZsw2RkYiILNSu225KKuNNSUkPdL5lxQsvvICioiIMHjwYlZWVGDBgABQKBRYuXIg5c+YYIiMREVkgQRC063uGd+I0F+mHRBAEoSUvLC8vx6VLl6DRaBAeHg4HB/NYaV9cXAxnZ2cUFRXByclJ7DhERBbrYnoRRr93CDZyKeL+M5z356K7au7nd4svYJieno68vDx06dIFDg4OaGF/IiIiatSui7WjPf3b8aakpD86F5+8vDwMGTIEYWFhGDVqFDIyMgAAM2bMwHPPPaf3gEREZJm001y8aCHpkc7FZ/78+ZDL5UhJSYGdnZ12+4QJE7Bjxw69hiMiIst0s6AclzKKIZUAQ3ibCtIjnRc379q1Czt37oSfn1+97e3atcONGzf0FoyIiCxX3WhPVKAb3OytRU5D5kTnEZ+ysrJ6Iz11cnNzoVDwjrlERHT//jqbi6M9pF86F58BAwbg888/134tkUig0Wiwdu1aDB48WK/hiIjI8hSWV+H49XwAvCkp6Z/OU11r167FoEGDEBsbi6qqKrzwwgu4ePEi8vPzcfjwYUNkJCIiC7L/cjbUGgFhng4IdLcXOw6ZGZ1HfMLDw3Hu3Dn06tULw4YNQ1lZGcaNG4e4uDi0bdvWEBmJiMiC7LiQCQAYyYsWkgHoNOJTXV2N4cOH48MPP8TKlSsNlYmIiCxUeVUNDlzJAcCrNZNh6DTiI5fLceHCBUgkvF8KERHp359XclBZrYGfqy06+fDq+aR/Ok91PfHEE/jkk08MkYWIiCzczltXax7ZyYv/yCaD0Hlxc1VVFT7++GPs3r0bUVFRsLevv/Dsrbfe0ls4IiKyHFU1GuyJv1V8OnOaiwxD5xGfCxcuoEePHnBycsKVK1cQFxenfZw5c8YAEYHk5GRMnz4dwcHBsLW1Rdu2bbF8+XJUVVXV2y8lJQVjxoyBvb09lEol5s6d22AfIiJqnY5ey0NJZQ08HBXoEeAqdhwyU80e8bl27RqCg4Oxf/9+Q+ZpVEJCAjQaDT788EOEhobiwoULmDlzJsrKyvDGG28AANRqNUaPHg0PDw8cOnQIeXl5mDJlCgRBwLp164yemYiIdFN3NtfwcE9IpZzmIsOQCM28rbpMJkNGRgbatGkDoPbeXO+99x48PcW5uNTatWuxfv16XLt2DQCwfft2PPjgg0hNTYWPjw8AYOvWrZg6dSqys7Pveov62zX3tvZERKQ/ao2A3q/uQW5pFb6Y3gv923mIHYlMTHM/v5s91XVnP/r9999RVlbW8oT3qaioCG5ubtqvjx49is6dO2tLDwCMGDECKpUKp06davJ9VCoViouL6z2IiMi4Tt0oQG5pFZxsrNAnxF3sOGTGdF7j0xokJSVh3bp1mDVrlnZbZmZmg9EnV1dXWFtbIzMzs8n3WrNmDZydnbUPf39/g+UmIqLG7bxY+/f00I6ekMtM8qOJTESzf7okEkmDUwvv91TDFStWaN+3qUdsbGy916Snp2PkyJEYP348ZsyYcc88giDcNefixYtRVFSkfaSmpt7X74mIiHQjCIJ2fc8Ins1FBtbsxc2CIGDq1KnaO7BXVlZi1qxZDU5n//7775v9zefMmYOJEyfedZ+goCDtr9PT0zF48GBER0fjo48+qrefl5cXjh8/Xm9bQUEBqqur77oOSaFQ8K7yREQiuphejLTCCtjKZRjAtT1kYM0uPlOmTKn39eOPP37f31ypVEKpVDZr37S0NAwePBiRkZHYtGkTpNL6g1XR0dFYvXo1MjIy4O3tDQDYtWsXFAoFIiMj7zsrEREZRt1oz6D2HrC1lomchsxds4vPpk2bDJnjrtLT0zFo0CAEBATgjTfeQE5OjvY5L6/aYdHhw4cjPDwckydPxtq1a5Gfn4+FCxdi5syZPDuLiKgV23FrfQ8vWkjGoPOVm8Wwa9cuJCYmIjExEX5+fvWeqzvbTCaT4bfffsPs2bPRt29f2NraYtKkSdrr/BARUetzJasEidmlsJZJMbhDG7HjkAVo9nV8LAWv40NEZDxv7b6C9/ZexdCObfDxlJ5ixyETpvfr+BAREemTIAj47Vw6AGB0V2+R05ClYPEhIiJRXMkqRVJOGaxlUgzpKM5dAMjysPgQEZEo6kZ7BoR5wMlGLnIashQsPkREZHSCIODX8xkAgAc5zUVGxOJDRERGdzmrBNdyymBtJcWQjjybi4yHxYeIiIzut3O1oz0DwzzgyGkuMiIWHyIiMqras7k4zUXiYPEhIiKjSsgswbXcumkuns1FxsXiQ0RERlU32jMozAMOCpO4gQCZERYfIiIyGkEQ8Puts7l40UISA4sPEREZTXxG7TSXgtNcJBIWHyIiMppfbl20cFB7TnOROFh8iIjIKDQaAT+fqS0+D3XzFTkNWSoWHyIiMorYGwVIK6yAg8KKFy0k0bD4EBGRUfx4Jg0AMLKzF2zkMpHTkKVi8SEiIoOrqtFoz+YaG8FpLhIPiw8RERncgSs5KCyvRhtHBaLbuosdhywYiw8RERlc3TTXmG4+kEklIqchS8biQ0REBlVSWY09l7IAcJqLxMfiQ0REBrXzYhZUNRqEeNijs6+T2HHIwrH4EBGRQf10a5prbIQvJBJOc5G4WHyIiMhgsksqcTgxFwDwcISPyGmIWHyIiMiAfjmbAY0AdA9wQaC7vdhxiFh8iIjIcG6f5iJqDVh8iIjIIK5mleDczSJYSSUY3dVb7DhEAFh8iIjIQL45dRMA8ECHNlA6KEROQ1SLxYeIiPSuWq3B96dri89jUf4ipyH6C4sPERHp3b6EbOSWVsHDUYFB7T3EjkOkxeJDRER6901sKgBgXA9fWMn4UUOtB38aiYhIr7KLK7H/cg4AYHwkp7modWHxISIivfrudBrUGgGRga4IbeMgdhyielh8iIhIbwRB0E5zTeCiZmqFWHyIiEhvTt0owLXcMthZyzCK1+6hVojFh4iI9ObrW6M9o7t4w0FhJXIaooZYfIiISC9KVTX49VwGAOCxnpzmotaJxYeIiPTi93MZKK9SI0Rpj6hAV7HjEDWKxYeIiPTif8dvAADGR/lDIpGInIaocSw+RER0386kFuLczSJYy6R4LMpP7DhETWLxISKi+/b5kWQAwIPdvOHOG5JSK8biQ0RE9yWvVKVd1PxEdJC4YYjugcWHiIjuy9aTqahSa9DNzxkR/i5ixyG6KxYfIiJqsRq1Bl8eTwEATOZoD5kAFh8j0WgEJGQWix2DiEiv9iZkI62wAq52cjzIKzWTCWDxMYKiimr8Y+MxPPL+EaTklYsdh4hIb744WnsK+4SeAbCRy0ROQ3RvLD5G4GRjBalEgopqNV78/hwEQRA7EhHRfUvMLsGhxFxIJcA/eweIHYeoWUyi+CQnJ2P69OkIDg6Gra0t2rZti+XLl6OqqqrefhKJpMFjw4YNIqWun2vNuC6wkUtxJClPey8bIiJTVjfa80AHT/i72Ymchqh5TOIOcgkJCdBoNPjwww8RGhqKCxcuYObMmSgrK8Mbb7xRb99NmzZh5MiR2q+dnZ2NHbdRQUp7PDesPVb/Ho9XfovHoPZt4OlkI3YsIqIWKamsxnen0wAAU2ICRU5D1HwmUXxGjhxZr8yEhITg8uXLWL9+fYPi4+LiAi8vr2a/t0qlgkql0n5dXGy4BcjT+gbh13PpOHuzCEt/vICPJkfysu5EZJK+OpGCUlUN2nrYo29bpdhxiJrNJKa6GlNUVAQ3N7cG2+fMmQOlUomePXtiw4YN0Gg0d32fNWvWwNnZWfvw9zfcHYWtZFK8/mg3yGUS7L6Uhd/OZxjsexERGYqqRo2PD14HADw1sC2kUv4DjkyHSRafpKQkrFu3DrNmzaq3/eWXX8Y333yDPXv2YOLEiXjuuefw6quv3vW9Fi9ejKKiIu0jNdWw62/aezli9qBQAMDyny6ioKzqHq8gImpdfjidhuwSFbycbDA2wlfsOEQ6EbX4rFixotEFybc/YmNj670mPT0dI0eOxPjx4zFjxox6zy1duhTR0dGIiIjAc889h1WrVmHt2rV3zaBQKODk5FTvYWizB7dFmKcD8sqqsPSnCzzLi4hMhloj4MM/rwEAZvQPhrWVSf77mSyYqGt85syZg4kTJ951n6CgIO2v09PTMXjwYERHR+Ojjz665/v36dMHxcXFyMrKgqen5/3G1RuFlQyvP9oNj64/gt/OZaCTj5N2FIiIqDXbeTET13PL4Gwrxz968RR2Mj2iFh+lUgmlsnmL4tLS0jB48GBERkZi06ZNkErv/a+MuLg42NjYwMXF5T6T6l+EvwtWPNQJS3+8gLU7LyOsjSOGhreeckZEdCdBELD+jyQAwJToQNgrTOL8GKJ6TOKnNj09HYMGDUJAQADeeOMN5OTkaJ+rO4Prl19+QWZmJqKjo2Fra4v9+/djyZIlePLJJ6FQKMSKfleP9wlEQmYx/ncsBfO2xuH72X3R3stR7FhERI06kpSH82lFsJFLMSUmSOw4RC1iEsVn165dSExMRGJiIvz8/Oo9V7c+Ri6X44MPPsCCBQug0WgQEhKCVatW4emnnxYjcrMtH9MJSdllOHotDzM+P4mfn+4HV3trsWMRETVQN9ozsWcA3B1a5z8oie5FInBlbT3FxcVwdnZGUVGRURY6A0BBWRUefv8wUvLL0SfEDZ//qzcXDBJRq3LuZiEe+u9hyKQSHHh+EPxceaVmal2a+/nNT9dWwNXeGh9PiYKDwgrHruVjxuexKFPViB2LiEjrv/sSAQAPdfNh6SGTxuLTSoR5OmLD45Gwlcvw55UcTNp4DHmlqnu/kIjIwOJSCrDrUhakEmD2oLZixyG6Lyw+rUi/dkp8ObM3XO3kOHuzCOM3HEVqfrnYsYjIggmCgNd3XAYAjOvhh3aePAGDTBuLTyvTPcAV3/47Br4utriWW4a/rz+CS+mGu38YEdHdHErMxdFrebCWSfHs0HZixyG6byw+rVBbDwd89+8YtPd0RHaJCmM/OIx1e6+iqubu9x0jItKn20d7/tkngGt7yCyw+LRSXs42+PqpaAwM80BVjQZv7r6C0e8dRGxyvtjRiMhCbL+QifNpRbC3luHpwby6PJkHFp9WzNlOjs+m9cS7EyPgbm+Nq9mleHTDUbz0w3mkFVaIHY+IzFiNWoM3dtaO9szoHwIlr9tDZoLFp5WTSCR4OMIXe58biMeiai/e+OXxFPR7bR+mfHoCOy5koFrNKTAi0q9vT93EtdwyuNlbY0b/YLHjEOmNSVy5mQAXO2u8/mg3jOvhh3f3XMXRa3k4cCUHB67kQOlgjZGdvdDVzwVdfJ3Rro0DrGQt67Q1ag0KK6pRWF6NwvIqFJZXo7xaDVW1GqoaDSqr1VBrBNjIZbCVy2BrXftfpaMCAW52cLWTQyKR6Pl3T0TGVFmtxjt7rgKoPX3d0UYuciIi/WHxMTF9QtzR50l3JOeWYVtsKr6JvYncUhX+dywFQAoAwEYuRXsvJ3g4WMNBYQVHGzkcbawgl0lRWaOGqloDVY0aFVVqFFZUo+BWyckvq0JJ5f1dONHeWgZ/NzsEuduje4ALooLc0MXXmVeiJjIhH/yRhMziSvg42+DxPoFixyHSK96y4g5i3LLiflSrNThwOQfHr9fePPBiWjFK9HDVZycbK7jaW8PFVg47ayso5FLYWMmgkEshk0hQeas4VVTX/jerWIXM4spG30thJUWEvwv6hSrxYDcfBCvt7zsfERnG9dwyjHj7T1SpNXh/Ug+M7uotdiSiZmnu5zeLzx1MrfjcSaMRkJxXhsuZJSiqqEZJZQ1KKqtRXFmDGo0GNlYy2MhlUFhJYSOXwdlWDhc7OdzsreFiZw1XOzmcbeUtmiqrrFbjZkEFUgvKcTWrBLHJBYi9UYD8sqp6+3X2dcKYrj4Y3dWbp8cStSKCIOCJT0/g4NVcDAjzwOZpPTl1TSaDxaeFTL34tDaCICAppwwnrudj58VMHErMhVrz14/coPYemNEvBH1D3fkXLJHIfj2XjjlfxsHaSopdzw5AEEdnyYSw+LQQi49h5ZWqsONiJn45m47j1/NR99PXwcsR0/sF46EIHyisZOKGJLJAJZXVGPLmAWSXqPDs0HZ4dmiY2JGIdMLi00IsPsZzI68Mmw4n4+vYVJRXqQEAnk4KzB3SDo9F+UPewjPTiEh3q365hE8PX0eQux12PDsANnL+A4RMC4tPC7H4GF9RRTW2nkjBZ0eSkVFUu0A6yN0Ozw1vj9FdvCGVcgqMyJAuphdhzLpD0AjA5//qhQFhHmJHItJZcz+/+U9qEp2zrRxPDWyLA88PxsqHOkHpYI3kvHI881Ucxvz3EI4k5YodkchsVas1WPz9eWgEYHQXb5YeMnssPtRqWFtJMSUmCAeeH4znhoXBQWGFi+nFmLTxOJ75Kg6ZRY2fLk9ELff27is4d7MIzrZy/OfBcLHjEBkciw+1OvYKKzwzpB3+fGEwnogOhFQC/HI2HUPe/AMf/ZnEW3QQ6cnRpDysP5AEAFgzrgu8nG1ETkRkeCw+1Gq52Vtj1cOd8fOcfugR4IKyKjVe/T0Bo949iFM3eJd6ovtRWF6FBV+fgSAAE6L8MaoLL1RIloHFh1q9zr7O+HZWDF5/tCvcbrtL/YqfL6JMD1epJrI0giBg8ffnkVFUiWClPZaN4RQXWQ4WHzIJUqkEj0X5Y99zA/FopB8EAfjsSDKGv/0nDlzJETsekUn5OjYV2y9kwkoqwbsTI2Cv4G0byXKw+JBJcbGzxhvju+Hzf/WCn6st0gorMOXTE3ju67MoqqgWOx5Rq5eYXYIVP18CADw3vD26+rmIG4jIyFh8yCQNCPPAzmcHYFrfIEgkwHenb2LE239i/+VssaMRtVq5pSpM++wkKqrViGnrjqcGhIgdicjoWHzIZNkrrLB8TCd881Q0gpX2yCyuxLRNJ/HCt2dRXMnRH6LbVVar8eTnsUjNr0CAmx3+O6kHLw5KFonFh0xeVJAbfp/bH9P7BUMiAb6OrR39+ZNrf4gAABqNgOe/PYfTKYVwsrHCp1N7ws3eWuxYRKJg8SGzYGstw38eDMe2J6MR6G6HjKJKPPHpCSz+/hxKOPpDFu7tPVfwy9l0WEkl2DA5EqFtHMSORCQaFh8yK72C3bB9Xn9MjQkCAHx1IhUj3zmIQ1d52wuyTN+euol1+xIBAK+O64KYtkqRExGJi8WHzI6dtRVWPNQJW5/sgwA3O6QVVuDxT45j8ffnufaHLMoPcTfxwrdnAQD/HtQWj0X5i5yISHwsPmS2+oS4Y/u8/ngiOhAA8NWJFAx/60/sjc8SORmR4W07mYIFX5+FRgAei/LD88Pbix2JqFVg8SGzZq+wwqqHO2Prk30Q5G6HzOJKTN8ci7lfxSGvVCV2PCKD+PxoMhZ9dx6CAEzuE4j/G9eVZ3AR3cLiQxahdvRnAJ4aEAKpBPj5bDqGvnUA38SmQqMRxI5HpDcfH7yGZT9dBABM7xeMVQ93Yukhuo1EEAT+rX+b4uJiODs7o6ioCE5OTmLHIQM4d7MQL3x7DgmZJQCAnkGueHlsZ3Tw4p83ma4atQb/tz0BHx+6DgB4enBbLBzeHhIJSw9ZhuZ+frP43IHFxzJUqzXYdPg63tlzFeVVasikEkyLCcKzw8LgwPsWkYnJLVVhzpencexaPgDguWFheGZIO5FTERkXi08LsfhYlvTCCrz86yVsv5AJAPBwVOC5YWEYH+UPGacHyAScSS3Ev/93ChlFlbC3luGN8d3wty7eYsciMjoWnxZi8bFMf1zOxoqfLyI5rxwA0N7TES+O6oBBYR6cKqBWSRAEfHkiBSt/voQqtQYhSnt8ODkS7TwdxY5GJAoWnxZi8bFcVTUafHHsBtbtu4rC8trr/fQLVWLhiPaI8HcRNxzRbZJzy/DSD+dxJCkPADAs3BNvPdYNjjZykZMRiYfFp4VYfKiovBrv/5GIzw4no0qtAQAMDPPA3CHtEBnoKnI6smTVag0+Pngd7+y5AlWNBgorKRYOb4/p/YJ55hZZPBafFmLxoTqp+eV4Z89V/HgmDepbp7z3C1Xi6cGh6BPixikwMqrj1/Kw4pdLiM8oBgD0DXXHq490QaC7vcjJiFoHFp8WYvGhO93IK8MH+5Pw3embqLlVgDp6O2FqTCAejvCFjVwmckIyZ6dTCvDWris4lFh7vzkXOzmWjOqIRyP9WL6JbsPi00IsPtSU1PxybDhQW4Aqq2unwFzs5JjQ0x8TewYgWMl/eZP+XEgrwtu7r2BvQjYAQC6T4LEof8wfFgalg0LkdEStD4tPC7H40L0Ullfh69hUfH70Bm4WVGi3R/i74JHuvniwqzfc+cFELVBVo8H2Cxn44ugNxN4oAABIJcDfe/hh7pB28HezEzkhUevF4tNCLD7UXGqNgH0J2dhy/AYOXs3VrgOykkrQv50Swzt5YUiHNmjjZCNyUmrtUvPL8U1sKr48kYrcW/eQs5JK8GBXb8wd0g4hHg4iJyRq/Vh8WojFh1oip0SFn8+m48e4NJxPK6r3XFc/Zwzp4IkBYUp08XWGlYy3yKPan5nfzqXjp7PpiEsp1G5v46jAP3oFYFLvAHiyNBM1G4tPC7H40P1KzC7BjguZ2BOfjTOphfWes7eWoWewG/qEuKNXsBs6+ThBYcXF0ZYiJa8cexOysCc+C0eT8lB3f1yJBIgOccek3gEY0ckLcpZjIp2ZXfF56KGHcObMGWRnZ8PV1RVDhw7Fa6+9Bh8fH+0+KSkpePrpp7Fv3z7Y2tpi0qRJeOONN2Btbd3s78PiQ/qUXVKJ/QnZ2JeQjWPX8lFUUV3veblMgo7eTujm54Ju/i7o7OuEEKUDrK34wWcOVDVqnL5RiD+uZGNffDauZpfWez7C3wUPdfPBg129OSVKdJ/Mrvi8/fbbiI6Ohre3N9LS0rBw4UIAwJEjRwAAarUaERER8PDwwJtvvom8vDxMmTIF48aNw7p165r9fVh8yFA0GgEJmSU4di0Px67lIfZGAfLLqhrsJ5dJENrGER29HNHeyxFhno4IbeMAXxdbXqSulav7Mz6cmItDibk4cT0fFdVq7fMyqQQ9g1wxtKMnhod7IcCdi5WJ9MXsis+dfv75Z4wdOxYqlQpyuRzbt2/Hgw8+iNTUVO0o0NatWzF16lRkZ2c3eRBUKhVUKpX26+LiYvj7+7P4kMEJgoCbBRU4k1qIczcLcTa1CPEZxShR1TS6v61chrZt7BHq4YC2Hg4I8XBA2zb2CHK357WERKLWCIjPKMaxa3k4fj0fJ5Pztbc7qaN0UKBfqDse6OiJge084GzH20oQGUJzi4+VETPpTX5+PrZs2YKYmBjI5bV/iRw9ehSdO3euN/U1YsQIqFQqnDp1CoMHD270vdasWYOVK1caJTfR7SQSCfzd7ODvZocx3Wp/buvKUEJmCeIzinE5swSJ2aW4lluKimo1LqQV40Ja8R3vA/i52taWIWVtGWp7qxwpHax5kTs9qqxW42xqIWJvFODE9XycvlHQoKjaWcvQO9gNfUOV6NdOifaejvwzIGpFTKr4LFq0CP/9739RXl6OPn364Ndff9U+l5mZCU9Pz3r7u7q6wtraGpmZmU2+5+LFi7FgwQLt13UjPkRiuL0MDQv/6+e5Rq1BSn45rmaXIimnFEnZZbiWW4rE7FKUVNYgNb8CqfkV+ONyTr33c7aVI7SNA0I9HNDO0wHtPB3Rro0DvJ1t+GHcDNkllTh9owCnbhQg9kYBLqQVoVpdf5DcQWGFnkGu6B3ijj4h7ujs48Qz94haMVGLz4oVK+452nLy5ElERUUBAJ5//nlMnz4dN27cwMqVK/HEE0/g119/1f4F3thf5IIg3PUveIVCAYWCF5uj1s1KJkXIremt2wmCgNzSKlzLKUVSTlltKbr1uFlQgaKKapy69cF9OweFFULbOKC9pyPCvBxv/dcBHg4Kiy1Eqho14jNKEJdSgLiUQsSlFiA1v6LBfh6OCvQKckNUkCt6Brmhg5cjiw6RCRG1+MyZMwcTJ0686z5BQUHaXyuVSiiVSoSFhaFjx47w9/fHsWPHEB0dDS8vLxw/frzeawsKClBdXd1gJIjIXEgkEng4KuDhqEDvEPd6z1VWq3EtpwyJObUjQ4nZJbiSVYrk3DKUqmpwJrWwwen2rnZytL9VhNp7OaG9V+0okZONea1LUWsEJOWU4mxqIc6nFeHszSLEpxejSq2pt59EArT3dERUkCsiA10RGeAGfzdbiy2HROZA1OJTV2Raom5Ndt3C5OjoaKxevRoZGRnw9vYGAOzatQsKhQKRkZH6CUxkQmzkMoT7OCHcp/4iv6oaDZLzynAlqwRXMktwOetWIcorQ0F5NY5dy8exa/n1XuPtbIN2no5o7+mAdm0cby2ydjSJhbrlVTW4mlWKi+nFuJRRhEvpxYjPKKl3tlUdVzs5uge4oru/C7oHuKKbvzMczaz0EVk6kzir68SJEzhx4gT69esHV1dXXLt2DcuWLUNGRgYuXrwIhUKhPZ3d09MTa9euRX5+PqZOnYqxY8fydHaiZqisViMxuxSXb5Why5m1j8ziyiZfo3SwRoiHA4Lc7RDobo9AdzsEutnD380WzrZyo42M1Kg1yCiqRGp+OVLyy5GUU4qr2aW4mlWKtMKG01VA7VlynX2d0NXPBV39nNHNzwWB7nYczSEyUWZ1Ovv58+cxb948nD17FmVlZfD29sbIkSOxdOlS+Pr6avdLSUnB7NmzG1zAUJc1PCw+RPUVVVTj6q1RoStZtWeZJeWUIqOo6UIEADZyKbydbeHtbAMvJxu42VvD1d4aLnZyuNpZw9HGCjZyGWysZLCRS6GwkkEiATSCAI1Q+9+qGg3KVDUorXtU1iCvrAo5JSrklKqQU6JCZlEl0gsrUKNp+q8ypYM1OnrXjn6Fezuhk48TgpUOkPG6SERmw6yKjzGx+BA1T6mqBtdvLai+kVeOG/lltf/NK9feaNOYrGVS+LnZwt/VDiEe9ghtUzstF9rGAW72zb96OxGZJrO+jg8Ric9BYYUufs7o4ufc4LnKajWyiiuRUVSJzKJKZBZXoqCsCgXlVSgor0ZBWRVKVTWorFajslqDyho1KqvVkEACmVQCiQSQSiSQyyRwUFjB/tbDQWEFN3vr2gXdDrWLuts4KhDgbgdPRxte2ZqI7onFh4j0zkYuu7Xmx17sKERE9fDiE0RERGQxWHyIiIjIYrD4EBERkcVg8SEiIiKLweJDREREFoPFh4iIiCwGiw8RERFZDBYfIiIishgsPkRERGQxWHyIiIjIYrD4EBERkcVg8SEiIiKLweJDREREFoPFh4iIiCyGldgBWhtBEAAAxcXFIichIiKi5qr73K77HG8Ki88dSkpKAAD+/v4iJyEiIiJdlZSUwNnZucnnJcK9qpGF0Wg0SE9Ph6OjIyQSyX2/X3FxMfz9/ZGamgonJyc9JKSm8FgbD4+18fBYGw+PtfEY4lgLgoCSkhL4+PhAKm16JQ9HfO4glUrh5+en9/d1cnLi/0hGwmNtPDzWxsNjbTw81saj72N9t5GeOlzcTERERBaDxYeIiIgsBouPgSkUCixfvhwKhULsKGaPx9p4eKyNh8faeHisjUfMY83FzURERGQxOOJDREREFoPFh4iIiCwGiw8RERFZDBYfIiIishgsPnrwwQcfIDg4GDY2NoiMjMTBgwfvuv+BAwcQGRkJGxsbhISEYMOGDUZKavp0Odbff/89hg0bBg8PDzg5OSE6Oho7d+40YlrTpuvPdZ3Dhw/DysoKERERhg1oRnQ91iqVCkuWLEFgYCAUCgXatm2LTz/91EhpTZuux3rLli3o1q0b7Ozs4O3tjWnTpiEvL89IaU3Xn3/+iTFjxsDHxwcSiQQ//vjjPV9jtM9Gge7L1q1bBblcLmzcuFG4dOmSMG/ePMHe3l64ceNGo/tfu3ZNsLOzE+bNmydcunRJ2LhxoyCXy4Vvv/3WyMlNj67Het68ecJrr70mnDhxQrhy5YqwePFiQS6XC6dPnzZyctOj67GuU1hYKISEhAjDhw8XunXrZpywJq4lx/qhhx4SevfuLezevVu4fv26cPz4ceHw4cNGTG2adD3WBw8eFKRSqfDuu+8K165dEw4ePCh06tRJGDt2rJGTm57ff/9dWLJkifDdd98JAIQffvjhrvsb87ORxec+9erVS5g1a1a9bR06dBBefPHFRvd/4YUXhA4dOtTb9tRTTwl9+vQxWEZzoeuxbkx4eLiwcuVKfUczOy091hMmTBCWLl0qLF++nMWnmXQ91tu3bxecnZ2FvLw8Y8QzK7oe67Vr1wohISH1tr333nuCn5+fwTKao+YUH2N+NnKq6z5UVVXh1KlTGD58eL3tw4cPx5EjRxp9zdGjRxvsP2LECMTGxqK6utpgWU1dS471nTQaDUpKSuDm5maIiGajpcd606ZNSEpKwvLlyw0d0Wy05Fj//PPPiIqKwuuvvw5fX1+EhYVh4cKFqKioMEZkk9WSYx0TE4ObN2/i999/hyAIyMrKwrfffovRo0cbI7JFMeZnI29Seh9yc3OhVqvh6elZb7unpycyMzMbfU1mZmaj+9fU1CA3Nxfe3t4Gy2vKWnKs7/Tmm2+irKwMjz32mCEimo2WHOurV6/ixRdfxMGDB2Flxb9Wmqslx/ratWs4dOgQbGxs8MMPPyA3NxezZ89Gfn4+1/ncRUuOdUxMDLZs2YIJEyagsrISNTU1eOihh7Bu3TpjRLYoxvxs5IiPHkgkknpfC4LQYNu99m9sOzWk67Gu89VXX2HFihXYtm0b2rRpY6h4ZqW5x1qtVmPSpElYuXIlwsLCjBXPrOjyc63RaCCRSLBlyxb06tULo0aNwltvvYXPPvuMoz7NoMuxvnTpEubOnYtly5bh1KlT2LFjB65fv45Zs2YZI6rFMdZnI/9pdh+USiVkMlmDfy1kZ2c3aK51vLy8Gt3fysoK7u7uBstq6lpyrOts27YN06dPxzfffIOhQ4caMqZZ0PVYl5SUIDY2FnFxcZgzZw6A2g9nQRBgZWWFXbt24YEHHjBKdlPTkp9rb29v+Pr6wtnZWbutY8eOEAQBN2/eRLt27Qya2VS15FivWbMGffv2xfPPPw8A6Nq1K+zt7dG/f3+88sorHKHXI2N+NnLE5z5YW1sjMjISu3fvrrd99+7diImJafQ10dHRDfbftWsXoqKiIJfLDZbV1LXkWAO1Iz1Tp07Fl19+yXn5ZtL1WDs5OeH8+fM4c+aM9jFr1iy0b98eZ86cQe/evY0V3eS05Oe6b9++SE9PR2lpqXbblStXIJVK4efnZ9C8pqwlx7q8vBxSaf2PSZlMBuCv0QjSD6N+Nup9ubSFqTs98pNPPhEuXbokPPvss4K9vb2QnJwsCIIgvPjii8LkyZO1+9edsjd//nzh0qVLwieffMLT2ZtJ12P95ZdfClZWVsL7778vZGRkaB+FhYVi/RZMhq7H+k48q6v5dD3WJSUlgp+fn/Doo48KFy9eFA4cOCC0a9dOmDFjhli/BZOh67HetGmTYGVlJXzwwQdCUlKScOjQISEqKkro1auXWL8Fk1FSUiLExcUJcXFxAgDhrbfeEuLi4rSXDhDzs5HFRw/ef/99ITAwULC2thZ69OghHDhwQPvclClThIEDB9bb/48//hC6d+8uWFtbC0FBQcL69euNnNh06XKsBw4cKABo8JgyZYrxg5sgXX+ub8fioxtdj3V8fLwwdOhQwdbWVvDz8xMWLFgglJeXGzm1adL1WL/33ntCeHi4YGtrK3h7ewv//Oc/hZs3bxo5tenZv3//Xf/+FfOzUSIIHK8jIiIiy8A1PkRERGQxWHyIiIjIYrD4EBERkcVg8SEiIiKLweJDREREFoPFh4iIiCwGiw8RERFZDBYfIiIishgsPkRksVasWIGIiAiDfo/k5GRIJBKcOXPGoN+HiJqHxYeIdDJ16lRIJBLMmjWrwXOzZ8+GRCLB1KlTjR/sHiQSCX788cd62xYuXIi9e/fq7XtMnToVY8eOrbfN398fGRkZ6Ny5s96+DxG1HIsPEenM398fW7duRUVFhXZbZWUlvvrqKwQEBIiYTDcODg5wd3c36PeQyWTw8vKClZWVQb8PETUPiw8R6axHjx4ICAjA999/r932/fffw9/fH927d9du27FjB/r16wcXFxe4u7vjwQcfRFJSUr33OnLkCCIiImBjY4OoqCj8+OOP9aaG/vjjD0gkEuzduxdRUVGws7NDTEwMLl++XO99fvnlF0RGRsLGxgYhISFYuXIlampqAABBQUEAgEceeQQSiUT79Z1TXRKJpMGjbl+1Wo3p06cjODgYtra2aN++Pd59913ta1esWIHNmzfjp59+0r72jz/+aHSq68CBA+jVqxcUCgW8vb3x4osvarMCwKBBgzB37ly88MILcHNzg5eXF1asWKHLHxERNYHFh4haZNq0adi0aZP2608//RT/+te/6u1TVlaGBQsW4OTJk9i7dy+kUikeeeQRaDQaAEBJSQnGjBmDLl264PTp03j55ZexaNGiRr/fkiVL8OabbyI2NhZWVlb1vtfOnTvx+OOPY+7cubh06RI+/PBDfPbZZ1i9ejUA4OTJkwCATZs2ISMjQ/v1nTIyMrSPxMREhIaGYsCAAQAAjUYDPz8/fP3117h06RKWLVuGl156CV9//TWA2mmzxx57DCNHjtS+R0xMTIPvkZaWhlGjRqFnz544e/Ys1q9fj08++QSvvPJKvf02b94Me3t7HD9+HK+//jpWrVqF3bt3N/0HQkTNY5B7vhOR2ZoyZYrw8MMPCzk5OYJCoRCuX78uJCcnCzY2NkJOTo7w8MMPC1OmTGn0tdnZ2QIA4fz584IgCML69esFd3d3oaKiQrvPxo0bBQBCXFycIAiCsH//fgGAsGfPHu0+v/32mwBA+7r+/fsLr776ar3v9cUXXwje3t7arwEIP/zwQ719li9fLnTr1q1BTo1GIzzyyCNCZGSkUF5e3uSxmD17tvD3v/+9wbG53fXr1+v9fl566SWhffv2gkaj0e7z/vvvCw4ODoJarRYEQRAGDhwo9OvXr9779OzZU1i0aFGTWYioeTjpTEQtolQqMXr0aGzevBmCIGD06NFQKpX19klKSsJ//vMfHDt2DLm5udqRnpSUFHTu3BmXL19G165dYWNjo31Nr169Gv1+Xbt21f7a29sbAJCdnY2AgACcOnUKJ0+e1I7wALVTU5WVlSgvL4ednZ1Ov7eXXnoJR48excmTJ2Fra6vdvmHDBnz88ce4ceMGKioqUFVVpfNZYfHx8YiOjoZEItFu69u3L0pLS3Hz5k3tGqnbf791v+fs7GydvhcRNcTiQ0Qt9q9//Qtz5swBALz//vsNnh8zZgz8/f2xceNG+Pj4QKPRoHPnzqiqqgIACIJQrwDUbWuMXC7X/rruNXVFSqPRYOXKlRg3blyD191eqprjf//7H95++2388ccf8PPz027/+uuvMX/+fLz55puIjo6Go6Mj1q5di+PHj+v0/nf7Pd++/fbfb91zdb9fImo5Fh8iarGRI0dqS8yIESPqPZeXl4f4+Hh8+OGH6N+/PwDg0KFD9fbp0KEDtmzZApVKBYVCAQCIjY3VOUePHj1w+fJlhIaGNrmPXC6HWq2+6/scPXoUM2bMwIcffog+ffrUe+7gwYOIiYnB7NmztdvuXKhtbW19z+8RHh6O7777rl4BOnLkCBwdHeHr63vX1xLR/ePiZiJqMZlMhvj4eMTHx0Mmk9V7ztXVFe7u7vjoo4+QmJiIffv2YcGCBfX2mTRpEjQaDZ588knEx8dj586deOONNwCgwajI3Sxbtgyff/45VqxYgYsXLyI+Ph7btm3D0qVLtfsEBQVh7969yMzMREFBQYP3yMzMxCOPPIKJEydixIgRyMzMRGZmJnJycgAAoaGhiI2Nxc6dO3HlyhX85z//abBIOigoCOfOncPly5eRm5uL6urqBt9n9uzZSE1NxTPPPIOEhAT89NNPWL58ORYsWACplH8lExka/y8jovvi5OQEJyenBtulUim2bt2KU6dOoXPnzpg/fz7Wrl3b4LW//PILzpw5g4iICCxZsgTLli0DoNsU1YgRI/Drr79i9+7d6NmzJ/r06YO33noLgYGB2n3efPNN7N69u8Ep93USEhKQlZWFzZs3w9vbW/vo2bMnAGDWrFkYN24cJkyYgN69eyMvL6/e6A8AzJw5E+3bt0dUVBQ8PDxw+PDhBt/H19cXv//+O06cOIFu3bph1qxZmD59er2SRkSGIxGamlAnIhLBli1bMG3aNBQVFdVbWExEpA9c40NEovr8888REhICX19fnD17FosWLcJjjz3G0kNEBsHiQ0SiyszMxLJly5CZmQlvb2+MHz++3mnpRET6xKkuIiIishhc3ExEREQWg8WHiIiILAaLDxEREVkMFh8iIiKyGCw+REREZDFYfIiIiMhisPgQERGRxWDxISIiIovx/8VE1yn7uyZYAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGwCAYAAACpYG+ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABX+UlEQVR4nO3dd1xV9f8H8Ndl3csGucgeIqLiFhzgzhxpmlqpX8vUzL5mpmmmmeYq81dqu7SyzMpSy1GmOXICDhw4wQGKbFmy4QL3nt8fyP1KLi7ee88dr+fjcR4POffce98c0fviMyWCIAggIiIiMgMWYhdAREREpC8MPkRERGQ2GHyIiIjIbDD4EBERkdlg8CEiIiKzweBDREREZoPBh4iIiMyGldgFGBqVSoWMjAw4OjpCIpGIXQ4RERHVgyAIKC4uhre3Nyws7t+uw+DzLxkZGfDz8xO7DCIiImqA1NRU+Pr63vdxBp9/cXR0BFBz45ycnESuhoiIiOqjqKgIfn5+6s/x+2Hw+Zfa7i0nJycGHyIiIiPzsGEqHNxMREREZsMkg89XX32FJk2aQCaTISwsDFFRUWKXRERERAbA5ILPxo0b8frrr2PevHmIi4tDjx498MQTTyAlJUXs0oiIiEhkEkEQBLGL0KYuXbqgY8eOWLVqlfpcy5YtMWzYMCxbtuyhzy8qKoKzszMKCws5xoeIiMhI1Pfz26RafCorK3Hq1Cn079+/zvn+/fvjyJEj93yOQqFAUVFRnYOIiIhMk0kFn9zcXCiVSnh4eNQ57+HhgaysrHs+Z9myZXB2dlYfXMOHiIjIdJlU8Kn176lsgiDcd3rb3LlzUVhYqD5SU1P1USIRERGJwKTW8ZHL5bC0tLyrdSc7O/uuVqBaUqkUUqlUH+URERGRyEyqxcfGxgZhYWHYu3dvnfN79+5FZGSkSFURERGRoTCpFh8AmDlzJsaOHYvw8HBERETgm2++QUpKCiZPnix2aURERCQykws+o0aNQl5eHpYsWYLMzEy0bt0aO3fuREBAgNilERERkchMbh2fR8V1fIiIiIyPWa7jQ0RERIarokqJ49fyRK3B5Lq6iIiIyLCk5JVh/fEb2HgyFaWKahyd2xdyB3FmVDP4EBERkdapVAIOXM7GT8du4NCVHNQOrPFxscWNvFIGHyIiIjJ+KpWAnRcy8fm+RFy+Waw+3yvEHS9EBKB388awtLj3osL6wOBDREREj0ypErDjfCY+33cVV7NLAACOMiv8p7M/nuvijwA3e5ErrMHgQ0RERI/kSGIuFm+PV7fwOMms8GL3JpjQrQmcba1Frq4uBh8iIiJqkIyCcizdkYAd5zMB1ASel3oEYXy3QDjJDCvw1GLwISIiIo0oqpVYE3UdX+xPRHmVEhYSYGzXAMzs1xzOdoYZeGox+BAREVG9Xc4qxvQNcbiUVdOt1TmwERYNbYVQb+NY9JfBh4iIiB5KpRKw9kgyPth1CZXVKrjZ2+CdJ0PxVHtvSCTizdLSFIMPERERPVBWYQVm/XYW0Ym5AIDHWjTGB0+3hbujOGvxPAoGHyIiIrqvI0m5mLL+NArKqiCztsD8waF4rou/UbXy3InBh4iIiO7p52M3sOjPi6hWCWjl7YRPR3dAcGMHsct6JAw+REREVEe1UoV3/4rHuqM3AABPtffGB0+3hczaUuTKHh2DDxEREakVllXh1V9Oq8fzvDmgOab0bmq0XVv/xuBDREREAICcYgWeX3Mcl28Ww87GEh+Pao8BrTzFLkurGHyIiIgIN4sqMObbY0jKKUVjRyl+mNDZaNbm0QSDDxERkZnLKCjHmG+PITmvDF7OMvwyqSuayA1jU1FtY/AhIiIyY6n5ZRiz5hhS88vh62qLXyd1hV8jO7HL0hkGHyIiIjOVXlCOUV8fRUZhBQLc7PDLpK7wcbEVuyydYvAhIiIyQ4VlVRj/fSwyCisQ5G6PX17qCk9nmdhl6ZyF2AUQERGRflVUKTHpp5O4ml0CDycpfp7YxSxCD8DgQ0REZFZUKgFv/HYWsdfz4SC1wg8TOsPbxLu37sTgQ0REZEaW/Z2AHecyYWUhwddjw9DSy/SmrD8Igw8REZGZ+CHmOr6Nug4A+PCZtugWLBe5Iv1j8CEiIjIDJ5Lz8e6OBAA121CM6OgrckXiYPAhIiIycbklCkz95TSUKgFD23ljSu+mYpckGgYfIiIiE6ZUCZi+IQ43ixQIbuyAZSPamMyGow3B4ENERGTCPv3nCmIS82BrbYlVz3WEvdS8l/Bj8CEiIjJRBy9n47P9iQCAZSPaoJmHo8gViY/Bh4iIyARlFpZjxsYzAIDnuvhjWAcfcQsyEAw+REREJkYQBMzZfB63yqrQ2scJ7zwZKnZJBoPBh4iIyMRsPJGKw1dyYGNlgU9GdYDM2lLskgwGgw8REZEJSS8ox3u31+uZ1T8EwY0dRK7IsDD4EBERmQhBEDB3y3mUKKrRwd8FE7sHiV2SwWHwISIiMhF3dnEtf6YdLC3Md72e+2HwISIiMgHs4qofBh8iIiIjJwgC3mYXV70w+BARERm53Rdv4tCVHNhYsovrYRh8iIiIjFhFlRLv7YgHALzcM4hdXA/B4ENERGTEvjl8DWm3yuHpJMOUPua763p9mVTwCQwMhEQiqXO89dZbYpdFRESkE+kF5fjqYM1eXG8Pbgk7G/PegLQ+TO4OLVmyBJMmTVJ/7eDAJj8iIjJN7+9MQEWVCp0DG2FIWy+xyzEKJhd8HB0d4enpWe/rFQoFFAqF+uuioiJdlEVERKRVR5PysONcJiwkwMKhoZBIOKC5PkyqqwsAPvjgA7i5uaF9+/ZYunQpKisrH3j9smXL4OzsrD78/Pz0VCkREVHDVCtVWLz9IgBgTBd/tPJ2Frki4yERBEEQuwht+fjjj9GxY0e4uroiNjYWc+fOxVNPPYU1a9bc9zn3avHx8/NDYWEhnJyc9FE2ERGRRn4+dgPzt12Ai501DrzRG672NmKXJLqioiI4Ozs/9PPb4IPPokWLsHjx4gdec+LECYSHh991fvPmzXjmmWeQm5sLNze3er1ffW8cERGRGMorlei1/ACyixVYNCQU47s1Ebskg1Dfz2+DH+MzdepUjB49+oHXBAYG3vN8165dAQCJiYn1Dj5ERESG7MejycguVsDHxRZjugSIXY7RMfjgI5fLIZfLG/TcuLg4AICXF0e6ExGR8SuuqMKqQ0kAgOmPN4ONlckN1dU5gw8+9XX06FEcO3YMffr0gbOzM06cOIEZM2Zg6NCh8Pf3F7s8IiKiR/Zd9HUUlFUhyN0eIzr4iF2OUTKZ4COVSrFx40YsXrwYCoUCAQEBmDRpEmbPni12aURERI/sVmkl1kRdBwDM7BcCK0u29jSEyQSfjh074tixY2KXQUREpBOrDyWhRFGNll5OGNSaQzgainGRiIjIwGUXVWDd0WQAwKz+IbDg7usNxuBDRERk4L44kIiKKhU6+rvgsRaNxS7HqDH4EBERGbCswgr8GpsCAJg1oDm3pnhEDD5EREQG7Lvoa6hSCugc2AiRTRu2vAv9D4MPERGRgSosq8Ivx2tae17p3VTkakwDgw8REZGB+ulYMkorlWjh6Yjezd3FLsckMPgQEREZoIoqJdbGJAMAJvdqyrE9WsLgQ0REZIB+O5mKvNJK+Lra4sm2XLdHWxh8iIiIDEy1UoVvoq4BACb1COIqzVrEO0lERGRgdpzPRGp+ORrZ22BkuJ/Y5ZgUBh8iIiIDIggCVh+qae0ZHxkIWxtLkSsyLQw+REREBuTw1VwkZBbBzsYSL0QEiF2OyWHwISIiMiBrbo/t+U9nf7jY2Yhcjelh8CEiIjIQSTkliLqaC4mkppuLtI/Bh4iIyED8dPQGAKBvi8bwa2QncjWmicGHiIjIAJQoqrH5VBoA4IWIQHGLMWEMPkRERAZga1w6ihXVCJLbo3swNyPVFQYfIiIikQmCgB+PJAMAxkYEwMKC21PoCoMPERGRyI5ey8PV7BLY2Vji6TBfscsxaQw+REREIvvxSM2g5hEdfeAksxa5GtPG4ENERCSi9IJy7InPAsBBzfrA4ENERCSiX47fgEoAIoLcEOLhKHY5Jo/Bh4iISCSKaiU2xKYCAMZFcnsKfWDwISIiEsmeizeRV1oJTycZHm/pIXY5ZoHBh4iISCSbTta09jwb7gsrS34k6wPvMhERkQjSbpUhOjEXAPBsmJ/I1ZgPBh8iIiIR/H4qDYIARDZ1g78b9+XSFwYfIiIiPVOpBPx2smZfrpHhbO3RJwYfIiIiPTuSlIf0gnI4yqwwsLWn2OWYFQYfIiIiPasd1PxUe2/IrC1Frsa8MPgQERHpUWFZFXZdrFmpeVS4v8jVmB8GHyIiIj3adiYdldUqtPRyQmsfJ7HLMTsMPkRERHpU2801MtwXEolE5GrMD4MPERGRnlxIL8TFjCLYWFpgWHsfscsxSww+REREevLb7dae/q084GpvI3I15onBh4iISA+qlCpsP5cJAHgmzFfkaswXgw8REZEeRF3NQX5pJeQONugeLBe7HLPF4ENERKQH2+IyAABPtvXmhqQi4p0nIiLSsVJFNfbG3wQADOvAQc1iYvAhIiLSsT3xWSivUiLQzQ7tfJ3FLsesGU3wWbp0KSIjI2FnZwcXF5d7XpOSkoIhQ4bA3t4ecrkc06ZNQ2VlpX4LJSIi+pfabq6n2vtw7R6RWYldQH1VVlbi2WefRUREBL777ru7HlcqlRg8eDDc3d0RHR2NvLw8jBs3DoIg4PPPPxehYiIiIiCnWIHoxFwA7OYyBEYTfBYvXgwA+OGHH+75+J49exAfH4/U1FR4e3sDAFauXInx48dj6dKlcHLisuBERKR/f53LgFIloJ2vM5rI7cUux+wZTVfXwxw9ehStW7dWhx4AGDBgABQKBU6dOnXf5ykUChQVFdU5iIiItGXbmf91c5H4TCb4ZGVlwcPDo845V1dX2NjYICsr677PW7ZsGZydndWHn5+frkslIiIzcT23FGdTC2AhAZ5s5yV2OQSRg8+iRYsgkUgeeJw8ebLer3evAWOCIDxwINncuXNRWFioPlJTUxv0vRAREf3bH2fSAQDdguVo7CgTuRoCRB7jM3XqVIwePfqB1wQGBtbrtTw9PXH8+PE6527duoWqqqq7WoLuJJVKIZVK6/UeRERE9SUIAv643c01nIOaDYaowUcul0Mu186y3REREVi6dCkyMzPh5VXTnLhnzx5IpVKEhYVp5T2IiIjq63x6Ia7nlkJmbYH+rTzFLoduM5pZXSkpKcjPz0dKSgqUSiXOnDkDAAgODoaDgwP69++P0NBQjB07FsuXL0d+fj5mzZqFSZMmcUYXERHp3Y7bG5L2beEBB6nRfNyaPKP5m1iwYAHWrVun/rpDhw4AgAMHDqB3796wtLTEjh07MGXKFHTr1g22trYYM2YMVqxYIVbJRERkpgRBwI7zNcFnUBsOajYkEkEQBLGLMCRFRUVwdnZGYWEhW4qIiKhBzqcVYsgX0ZBZW+D0O/1gZ2M07QxGq76f3yYznZ2IiMhQ1Lb2PNaiMUOPgWHwISIi0iJBELCT3VwGi8GHiIhIiy5mFCElvwwyaws81qKx2OXQvzD4EBERaVFtN1ef5uzmMkQMPkRERFrCbi7Dx+BDRESkJfGZRbiRVwapFbu5DBWDDxERkZbUtvb0bu4Oey5aaJAYfIiIiLSgppsrCwC7uQwZgw8REZEWJGQW43puKWysLNC35f03xyZxMfgQERFpgbqbK8Sde3MZMAYfIiIiLfj7AmdzGQMGHyIiokeUmF2CpJxSWFtK8FhLzuYyZAw+REREj2hv/E0AQERTOZxk1iJXQw/C4ENERPSI9sTXzObqH8pBzYaOwYeIiOgRZBdVIC6lAADQj8HH4DH4EBERPYK9CTXdXO39XODhJBO5GnqYegefbdu2QalU6rIWIiIio7PnYk3w6d+KrT3GoN7B55lnnoGPjw/mzJmDS5cu6bImIiIio1BcUYUjSbkAgP6hniJXQ/VR7+CTkpKC1157DVu3bkWrVq3QvXt3rF27FqWlpbqsj4iIyGAdvJyDKqWAIHd7BDd2ELscqod6Bx9vb2/MmzcPV65cwf79+9G0aVNMmzYNXl5eeOmll3D06FFd1klERGRw9tyexs7WHuPRoMHNvXr1wrp165CZmYmPPvoICQkJ6N69O1q1aqXt+oiIiAxSZbUKBy9lA+D4HmPySJuJODg4oE+fPkhOTsalS5dw5coVbdVFRERk0I5dy0OxohrujlK093URuxyqpwa1+JSVlWHdunXo1asXQkJCsHHjRsycORPJyclaLo+IiMgw1S5a2C/UAxYWEpGrofrSqMUnJiYG33//PX777TdUV1djxIgR+Oeff9CnTx9d1UdERGRwVCpBvU0FV2s2LvUOPiEhIUhKSkKHDh3wwQcfYMyYMXB2dtZlbURERAbpXHohbhYp4CC1QkRTN7HLIQ3UO/gMHDgQEydORLt27XRZDxERkcH753ZrT6/m7pBaWYpcDWmi3sHns88+U/+5uroaBw8eRFJSEsaMGQNHR0dkZGTAyckJDg5cx4CIiEzbvtuzuR5v2VjkSkhTGs/qunHjBgYOHIiUlBQoFAr069cPjo6O+PDDD1FRUYHVq1frok4iIiKDkFFQjoTMIlhIgF4hDD7GRuNZXdOnT0d4eDhu3boFW1tb9fnhw4dj3759Wi2OiIjI0NS29nT0d0UjexuRqyFNadziEx0djZiYGNjY1P3LDggIQHp6utYKIyIiMkT7b+/G/hi7uYySxi0+KpXqnru0p6WlwdHRUStFERERGaKyymrEJOUBAB5vyWnsxkjj4NOvXz988skn6q8lEglKSkqwcOFCDBo0SJu1ERERGZQjiXmorFbB19UWzbgpqVHSuKvr448/Rp8+fRAaGoqKigqMGTMGV69ehVwux6+//qqLGomIiAzCvks13Vx9WzSGRMLVmo2RxsHH29sbZ86cwYYNG3Dq1CmoVCpMnDgRzz33XJ3BzkRERKZEEATsS6gZ2PwYu7mMVoM2KbW1tcWECRMwYcIEbddDRERkkC5mFCG7WAE7G0t0DWokdjnUQA3apJSIiMjc1Lb29Ggm52rNRozBh4iIqB72q8f3sJvLmDH4EBERPUR2UQXOphUCAHq3cBe5GnoUDD5EREQPceByTTdXO19nNHaUiVwNPQqNg8/48eNx+PBhXdRCRERkkGrH9/TlbC6jp3HwKS4uRv/+/dGsWTO8//773KaCiIhMmqJaiejEXADAYy24TYWx0zj4bN68Genp6Zg6dSp+++03BAYG4oknnsDvv/+OqqoqXdQIAFi6dCkiIyNhZ2cHFxeXe14jkUjuOrhbPBERPYoT12+hrFKJxo5StPJ2ErscekQNGuPj5uaG6dOnIy4uDrGxsQgODsbYsWPh7e2NGTNm4OrVq9quE5WVlXj22WfxyiuvPPC6tWvXIjMzU32MGzdO67UQEZH5qB3f0yvEnas1m4AGLWBYKzMzE3v27MGePXtgaWmJQYMG4eLFiwgNDcWHH36IGTNmaKtOLF68GADwww8/PPA6FxcXeHp6au19iYjIvB28HXz6sJvLJGjc4lNVVYXNmzfjySefREBAAH777TfMmDEDmZmZWLduHfbs2YOffvoJS5Ys0UW9DzV16lTI5XJ06tQJq1evhkqleuD1CoUCRUVFdQ4iIiIASM0vQ1JOKSwtJOgWLBe7HNICjVt8vLy8oFKp8J///AexsbFo3779XdcMGDDgvuNwdOndd99F3759YWtri3379uGNN95Abm4u5s+ff9/nLFu2TN2aREREdKfa1p6wAFc421qLXA1pg8YtPh9//DEyMjLw5Zdf3jP0AICrqyuuX7/+0NdatGjRPQck33mcPHmy3rXNnz8fERERaN++Pd544w0sWbIEy5cvf+Bz5s6di8LCQvWRmppa7/cjIiLTduByDgCgd3MuWmgqNG7xGTt2rNbefOrUqRg9evQDrwkMDGzw63ft2hVFRUW4efMmPDzuvfaCVCqFVCpt8HsQEZFpqqhS4khSzTT2Ps05vsdUaBx8RowYcc/zEokEMpkMwcHBGDNmDJo3b/7Q15LL5ZDLdddnGhcXB5lMJkq3GxERGbfj1/NRUaWCp5MMLTwdxS6HtETjri4nJyfs378fp0+fVk/ri4uLw/79+1FdXY2NGzeiXbt2iImJ0WqhKSkpOHPmDFJSUqBUKnHmzBmcOXMGJSUlAIDt27fj22+/xYULF5CUlIQ1a9Zg3rx5ePnll9miQ0REGqsd39O7OaexmxKNW3w8PT0xZswYfPHFF7CwqMlNKpUK06dPh6OjIzZs2IDJkydjzpw5iI6O1lqhCxYswLp169Rfd+jQAQBw4MAB9O7dG9bW1vjqq68wc+ZMqFQqBAUFYcmSJXj11Ve1VgMREZmPgxzfY5IkgiAImjzB3d0dMTExCAkJqXP+ypUriIyMRG5uLs6fP48ePXqgoKBAm7XqRVFREZydnVFYWAgnJ67QSURkjpJzS9F7xUFYWUgQt6AfHGWc0WXo6vv5rXFXV3V1NS5dunTX+UuXLkGpVAIAZDIZmwWJiMho1XZzhQe6MvSYmAbN6po4cSLefvttdOrUCRKJBLGxsXj//ffxwgsvAAAOHTqEVq1aab1YIiIifTh4paabi7O5TI/Gwefjjz+Gh4cHPvzwQ9y8eRMA4OHhgRkzZmDOnDkAgP79+2PgwIHarZSIiEgPKqqUOJqUBwDozeBjcjQKPtXV1Vi/fj0mTpyIefPmqbd3+Hdfmr+/v/YqJCIi0qOj1/KgqFbB21mGEA8HscshLdNojI+VlRVeeeUVKBQKADWBhwOAiYjIlBy6PZurV/PGHK9qgjQe3NylSxfExcXpohYiIiLRHb49vqdXCKexmyKNx/hMmTIFb7zxBtLS0hAWFgZ7e/s6j7dt21ZrxREREelTSl4ZruWWwspCgshgN7HLIR3QOPiMGjUKADBt2jT1OYlEAkEQIJFI1FPaiYiIjM2hqzWtPR0DXOHEaewmSePgU59d14mIiIwRu7lMn8bBJyAgQBd1EBERiaqyWoUjiTW7sTP4mC6NBzcDwE8//YRu3brB29sbN27cAAB88skn+OOPP7RaHBERkb6cunELpZVKuNnbINSLM5ZNlcbBZ9WqVZg5cyYGDRqEgoIC9ZgeFxcXfPLJJ9quj4iISC8O3x7f0zPEHRYWnMZuqjQOPp9//jm+/fZbzJs3D5aWlurz4eHhOH/+vFaLIyIi0hf1+j3s5jJpGgef69evo0OHDnedl0qlKC0t1UpRRERE+pRdXIH4zJrdCLo3k4tcDemSxsGnSZMmOHPmzF3n//77b4SGhmqjJiIiIr2KulIzqLmNjzPkDlKRqyFd0nhW15tvvolXX30VFRUVEAQBsbGx+PXXX7Fs2TKsWbNGFzUSERHp1CFOYzcbGgefCRMmoLq6GrNnz0ZZWRnGjBkDHx8ffPrppxg9erQuaiQiItIZpUpA1B0Dm8m0aRx8AGDSpEmYNGkScnNzoVKp0LhxY23XRUREpBcX0gtxq6wKjlIrdPB3Ebsc0rEGBZ9acjkHgBERkXGr7ebqFiyHtWWDlrcjI6Lx3/DNmzcxduxYeHt7w8rKCpaWlnUOIiIiY1IbfNjNZR40bvEZP348UlJS8M4778DLywsSCRd5IiIi41RYXoUzqQUAgJ4h7MUwBxoHn+joaERFRaF9+/Y6KIeIiEh/jiTmQqkS0NTdHr6udmKXQ3qgcVeXn58fBEHQRS1ERER6dZizucyOxsHnk08+wVtvvYXk5GQdlENERKQfgiDg8O2FC3s2Y/AxFxp3dY0aNQplZWVo2rQp7OzsYG1tXefx/Px8rRVHRESkK9dyS5FeUA4bSwt0CWokdjmkJxoHH+7ATkREpuDw7dlcnZq4ws7mkVZ3ISOi8d/0uHHjdFEHERGRXtUGH3ZzmZcGrdSUlJSE+fPn4z//+Q+ys7MBALt27cLFixe1WhwREZEuKKqVOHatZmgGBzabF42Dz6FDh9CmTRscP34cW7ZsQUlJCQDg3LlzWLhwodYLJCIi0raTybdQXqWEu6MULTwdxS6H9Ejj4PPWW2/hvffew969e2FjY6M+36dPHxw9elSrxREREelC7TT2Hs3kXIjXzGgcfM6fP4/hw4ffdd7d3R15eXlaKYqIiEiXaqex92I3l9nROPi4uLggMzPzrvNxcXHw8fHRSlFERES6kl1cgYTMIkgkQPdgblNhbjQOPmPGjMGcOXOQlZUFiUQClUqFmJgYzJo1Cy+88IIuaiQiItKaqNutPa29neHmIBW5GtI3jYPP0qVL4e/vDx8fH5SUlCA0NBQ9e/ZEZGQk5s+fr4saiYiItCbqjvE9ZH40XsfH2toa69evx7vvvovTp09DpVKhQ4cOaNasmS7qIyIi0hqVSkDU1dvbVHB8j1lq8FKVQUFBCAoK0mYtREREOhWfWYS80krY21iio7+r2OWQCBq0gCEREZExOnR7teaIpnLYWPEj0Bzxb52IiMyGepuKEI7vMVcMPkREZBZKFNU4nXILAPfnMmcMPkREZBaOJeWhSinAv5EdAuX2YpdDImlQ8ImKisLzzz+PiIgIpKenAwB++uknREdHa7U4IiIibandpoLdXOZN4+CzefNmDBgwALa2toiLi4NCoQAAFBcX4/3339d6gQCQnJyMiRMnokmTJrC1tUXTpk2xcOFCVFZW1rkuJSUFQ4YMgb29PeRyOaZNm3bXNUREZJ7U43vYzWXWNA4+7733HlavXo1vv/0W1tbW6vORkZE4ffq0VourdenSJahUKnz99de4ePEiPv74Y6xevRpvv/22+hqlUonBgwejtLQU0dHR2LBhAzZv3ow33nhDJzUREZHxSMkrQ3JeGawsJIho6iZ2OSQijdfxuXz5Mnr27HnXeScnJxQUFGijprsMHDgQAwcOVH8dFBSEy5cvY9WqVVixYgUAYM+ePYiPj0dqaiq8vb0BACtXrsT48eOxdOlSODk53fO1FQqFutUKAIqKinTyPRARkXgO3e7m6ujvCkeZ9UOuJlOmcYuPl5cXEhMT7zofHR2t1wUNCwsL0ahRI/XXR48eRevWrdWhBwAGDBgAhUKBU6dO3fd1li1bBmdnZ/Xh5+en07qJiEj/ojiNnW7TOPj897//xfTp03H8+HFIJBJkZGRg/fr1mDVrFqZMmaKLGu+SlJSEzz//HJMnT1afy8rKgoeHR53rXF1dYWNjg6ysrPu+1ty5c1FYWKg+UlNTdVY3ERHpX5VShSNJeQC4TQU1oKtr9uzZKCwsRJ8+fVBRUYGePXtCKpVi1qxZmDp1qkavtWjRIixevPiB15w4cQLh4eHqrzMyMjBw4EA8++yzeOmll+pcK5FI7nq+IAj3PF9LKpVCKuXuvEREpioupQAlimo0srdBa29nscshkTVor66lS5di3rx5iI+Ph0qlQmhoKBwcHDR+nalTp2L06NEPvCYwMFD954yMDPTp0wcRERH45ptv6lzn6emJ48eP1zl369YtVFVV3dUSRERE5qN2Nlf3YDksLO7/izCZhwZvUpqRkYG8vDz07NkTtra2D21ZuRe5XA65vH79renp6ejTpw/CwsKwdu1aWFjU7aWLiIjA0qVLkZmZCS8vLwA1A56lUinCwsI0qouIiEzH/9bvYTcXNWCMT15eHvr27YuQkBAMGjQImZmZAICXXnpJZ1PHMzIy0Lt3b/j5+WHFihXIyclBVlZWnbE7/fv3R2hoKMaOHYu4uDjs27cPs2bNwqRJk+47o4uIiExbfmklzqcXAgB6NOPAZmpA8JkxYwasra2RkpICOzs79flRo0Zh165dWi2u1p49e5CYmIj9+/fD19cXXl5e6qOWpaUlduzYAZlMhm7dumHkyJEYNmyYero7ERGZn6irORAEoIWnIzycZGKXQwZA466uPXv2YPfu3fD19a1zvlmzZrhx44bWCrvT+PHjMX78+Ide5+/vj7/++ksnNRARkfGJupoLgN1c9D8at/iUlpbWaemplZuby9lRRERkMARBQNRVblNBdWkcfHr27Ikff/xR/bVEIoFKpcLy5cvRp08frRZHRETUUJdvFuNmkQIyawuEB7qKXQ4ZCI27upYvX47evXvj5MmTqKysxOzZs3Hx4kXk5+cjJiZGFzUSERFp7NDlmtaeiCA3yKwtRa6GDIXGLT6hoaE4d+4cOnfujH79+qG0tBQjRoxAXFwcmjZtqosaiYiINHboCqex0900avGpqqpC//798fXXXz90xWUiIiKxlCqqcTL5FgCgF4MP3UGjFh9ra2tcuHBB44UKiYiI9OnYtTxUKlXwa2SLJnJ7scshA6JxV9cLL7yA7777The1EBERaUVtN1evEHf+sk51aDy4ubKyEmvWrMHevXsRHh4Oe/u6Sfqjjz7SWnFEREQN8b/g01jkSsjQaBx8Lly4gI4dOwIArly5UucxpmoiIhJbcm4pbuSVwdpSgoimbmKXQwam3sHn2rVraNKkCQ4cOKDLeoiIiB5JbWtPWIArHKQN3oubTFS9x/g0a9YMOTk56q9HjRqFmzdv6qQoIiKihmI3Fz1IvYOPIAh1vt65cydKS0u1XhAREVFDKaqVOJqUB4DT2OneNJ7VRUREZKhOJt9CeZUS7o5StPRyFLscMkD1Dj4SieSuwcsczExERIaE09jpYeo96ksQBIwfP169A3tFRQUmT55813T2LVu2aLdCIiKieqrdn4vdXHQ/9Q4+48aNq/P1888/r/ViiB6mWqmCUhAgteKGg0RUV2ZhOS7fLIaFBOgeLBe7HDJQ9Q4+a9eu1WUdRChRVONyVhGu5ZTiWm4prueUIjmvFMUV1SirrEZppRKV1SoAgLWlBPZSK9jbWMFRZgVPZxkC3ezh38gOgXI7NJE7IKCRHSws2NRNZC4O3+7mauvrAld7G5GrIUPFBQ5INBVVSpy+cQtHkvIQk5SLc2mFUKqEhz8RQJVSQEFZFQrKqgAAl7KKAeTUucZJZoV2fi5o5+uC9n4uCAtw5X+GRCbszvE9RPfD4EN6VaVU4fCVHGw5nY5/Em5CcbsFp5ankwxNG9sjSO6AIHd7BMrt4WpnA3sbS9jaWMLOxgqWEglKK6tRoqg5iiuqkVFQjuS8UqTkleFGXhmSckpQVFGNqKu5iLqaCwCQSGp+E+zZTI6eIe7o4OcCK0tObCQyBVVKlfrfeq/mDD50fww+pBcJmUXYdDIVf57JQF5ppfq8h5MUkU3liGzqhoimbvB1tavX6znbWT/w8SqlCpezinE2rQBnUgoQl1qAxOwSnE0twNnUAny+PxGOMiv0bdEYg9p4oWeIO2TWHDdEZKxO37iF4opqNLK3QTtfF7HLIQPG4EM6IwgCjl7Lw6qDSerfxABA7mCDp9r7YHgHH7TydtLJlFNrSwu09nFGax9nPNclAACQVViBqKs5OHw1F9FXc3CrrArbzmRg25kM2NtY4rGWHhjcxguPtWgMGyu2BBEZkwN3zOay5Ng+egAGH9I6lUrAnvibWHUoCWdTCwAAFhJgYGtPPBPmix7N3GEtQheTp7MMz4b74dlwPyhVAs6k3sLf57Pw94UspBeUY/vZDGw/mwEXO2sMbeeNpzv6oq2vM9cCITICBy9nAwB6s5uLHkIi/HsvCjNXVFQEZ2dnFBYWwsnJSexyjE5MYi6W7khAfGYRAEBqZYFRnfwwqUcQ/BrVrxtL3wRBwLm0Quw4n4k/zqTjZpFC/VhwYweM7uSHpzv6cmA0kYHKKChH5P/th4UEODW/H/+tmqn6fn4z+PwLg0/DXLlZjGU7E9TNzY5SK4yLDMT4boGQO0hFrq7+lCoBMYm52Hw6DbsvZqGiqmbwtY2VBQa38cJzXfwRFuDKViAiA/LL8RS8vfU8Ovq7YMuUbmKXQyKp7+c3u7rokdwqrcTyPZexITYFKgGwspDg+a4BmNa3GRoZ4W9dlhYS9AxxR88QdxRXVOHPsxn45XgKLmYUYWtcOrbGpaOFpyPGRwZiWAcfDogmMgAHbndz9WnO3djp4dji8y9s8akfQRDw+6k0vL8zAbdur6UzsJUn5jzRAk3k9g95tnERBAFn0wrxy/Eb+PNshroVyNXOGmO6+GNs10B4OstErpLIPCmqleiwZC/KKpX467XuaO3jLHZJJBJ2dTUQg8/DJWYX4+2tFxB7PR8A0NzDEUueaoUuQW4iV6Z7hWVV2HQyFT8cSUZ6QTmAmlauJ9t64b+9mqKlF39miPQpJjEXz605DndHKY7P7cvV2s0Yu7oMTG6JAjGJuXiqvY/YpTSYolqJL/YnYvWhJFQpBcisLfD64yGY2L2JKLO0xOBsZ41JPYMwoVsg/km4ie9jkhF7PV89Lb5XiDv+2ysIEUFuHAdEpAcHLt2ezRXiztBD9cLgowf5pZV46osYZBSWw97GCo+HeohdksbiUm5h9u/ncDW7BADQt0VjLBraymBnaumalaUFBrb2wsDWXjifVoivDydh5/lMHLqSg0NXctDW1xmv9glGv5Ye/M+YSIfU43tacHwP1Y95/Jouskb2Nujd3B2CAEzfEIfLWcVil1Rv5ZVKLN0Rj6dXHcHV7BLIHWzw1XMdsWZcuNmGnn9r4+uML8Z0xMFZffBCRABk1hY4l1aI//50CoM+i8L2sxn13oOMiOovJa8MSTmlsLSQoHsz7sZO9cPgoyeLhrZC16BGKK1U4qUfTyD/jm0bDNXxa3l44tPD+DbqOlQCMLyDD/bO6IVBbbzYjXMP/m52WPJUa8TMeQyv9mkKB6kVLmUV47Vf49Dvo0PYcjqNAYhIiw5eqWntCQtwhZPswdvYENVi8NETa0sLrHouDP6N7JCaX45Xfj6Fyn9t0GkoShTVmL/tPEZ9cwzJeWXwdJLh+/Hh+HhUey4MVg9uDlK8OaAFYuY8hhmPh8DZ1hrXcksxc9NZ9Pv4EP48mwEVAxDRI6sd38Np7KQJzur6F13P6rpysxgjvjqCEkU1xnTxx9JhrQ2q9eTg5Wy8veU8MgorAAD/6eyPuYNa8LepR1CiqMa6I8n4NuoaCm5P/W/u4YgZ/ZphQCtPg/r7JzIWFVVKtFu8B4pqFXa93gMtPDmj0tzV9/ObLT56FuLhiE9Ht4dEUrPa6HfR18UuCUDNrLOZG89g/NoTyCisgF8jW/zyUhcsG9GGoecROUit8GqfYETN7oMZj4fAUWaFyzeLMfnn0xj2ZQyOJOU+/EWIqI6jSXlQVKvg5SxDcw9HscshI8LgI4K+LT0wZ2ALAMB7OxLw4a5LEKvhTaUSsP74DfRdeQhb4tIhkQAvdmuC3a/3RGQwBwtqk6PMGtMfb4bo2Y/htceCYWdjibNphRjz7XG88H0sLqQXil0ikdH4J+EmAOCxFo3Zakoa4XR2kfy3ZxAqqpT45J+r+OpgEjILK/DB021hY6W/LHoxoxDztl7Amds7qId6OWHp8Nbo4O+qtxrMkbOdNd7o3xwvRATii/1X8UtsCg5fycHhKzkY1t4bbw5sAR8XW7HLJDJYgiBgX0LN+J7HWxrf8iAkLo7x+Rd9r9y86UQq5m49D6VKQLdgN6x6PkznXUvpBeX49J8r+P1UGlRCTVfMG/1DMLZrAKzMZCFCQ5KSV4aVey/jjzMZAGp2tJ/UIwiTe9fMDCOiui6kF+LJz6Nha22JuAX9uGceAeCWFQ0mxpYVh67kYMrPp1BaqURzD0esHNlOJ/vN5JUo8OWBJPx87AYqlTUzyga39cKCJ0Ph4cS9psR2Ib0Q7/4Vj+O3twKRO0gxq38Ing33gyUXQSRS++SfK/jkn6voH+qBb14IF7scMhAMPg0k1l5dF9ILMeGHE8gpVkAiAZ7u6Is3BzTXSiBJySvDrydS8OORZJRWKgEAXYMa4c0BLRAWwG4tQyIIAvbE38SynQlIzisDALT2ccLioa0QFtBI5OqIDMOQz6NxPr0QHz7dFiM7+YldDhkIBp8GEnOT0qzCCiz7O0Hd5WFrbYn/9grCpB5BsNewy6OyWoU98VnYEJuK6MT/zRpq4+OMNwc0R49mcg4INGCV1Sr8eDQZn+67iuKKagDAiA4+eOuJFmjM1jkyY1mFFei6bB8kEiD27cfh7igVuyQyECYVfJKTk/Huu+9i//79yMrKgre3N55//nnMmzcPNjb/W1DvXh/kq1atwuTJk+v9XoawO/vplFt47694nE4pAADYWFmgU6Aruge7o0czOUK9nO7a/6m8Uonz6YU4k3oLcSkFOH49v87q0D2ayfFclwD0D+XeUcYkt0SB5bsuY9OpVAi3x2NN79sM47sFms3GsER3Wn/8BuZtvYAO/i7YOqWb2OWQATGp3dkvXboElUqFr7/+GsHBwbhw4QImTZqE0tJSrFixos61a9euxcCBA9VfOztrf6yMrnX0d8XmVyKx43wmVuy+jOS8MsQk5iEmMQ8f7Kr58LO1sYQEgIVEAokEyC5W3LUdQmNHKUaG+2FUJz/uq2Wk5A5SfPBMW4zp4o8Ff17E2dQCLN2ZgM2n07B0eBt2VZLZ4WwuelRG0eJzL8uXL8eqVatw7do19TmJRIKtW7di2LBhDX5dQ2jxuZMgCEjKKUH01VxEJ+biaFKeepzOvzV2lKKDvwva+7mig78LwgNcOUvLhKhUAn4/lYZlfyfg1u0VoP/T2R9zBjaHix23EiHTV16pRPslXK2Z7s2kWnzupbCwEI0a3T3Yc+rUqXjppZfQpEkTTJw4ES+//DIsLO7/4a9QKKBQKNRfFxUV6aTehpJIJAhu7Ijgxo4Y360JqpQqJOeWololQCUIEARAJQiQO0jh5SzjuB0TZmEhwchOfng81AP/93cCNp1Mw6+xKdhzMQsLhoRiaDtv/v2TSYtOzIWiWgUfF1uu1kwNZpTBJykpCZ9//jlWrlxZ5/y7776Lvn37wtbWFvv27cMbb7yB3NxczJ8//76vtWzZMixevFjXJWuNtaUFmvEfvFlrZG+DD59ph2fC/DBv63lczS7B9A1nsC0uHe8Nb8PFD8lk7bu9WnO/UA+GfGowUbu6Fi1a9NDQceLECYSH/2+dhoyMDPTq1Qu9evXCmjVrHvjclStXYsmSJSgsvP9WAPdq8fHz8zOYri6iB6msVuGbw0n4bF8iKpUq2NtYYvbAFni+awDX/iGTolIJ6Pz+PuSWKPDTxM7o0cxd7JLIwBjFrK7c3Fzk5j54g8bAwEDIZDXTdzMyMtCnTx906dIFP/zwwwO7sAAgJiYG3bt3R1ZWFjw86jcQztDG+BDVR2J2CeZuOYcTybcAAB39XfDhM+0Q3NhB5MqItONMagGGfRkDB6kVTr/TT6/b+5BxMIoxPnK5HHJ5/TbCTE9PR58+fRAWFoa1a9c+NPQAQFxcHGQyGVxcXB6xUiLDFtzYARtfjsD62BR88PclnE4pwKDPojCrfwgmdg9i6w8Zvdpurp4hcoYeeiRGMcYnIyMDvXv3hr+/P1asWIGcnBz1Y56engCA7du3IysrCxEREbC1tcWBAwcwb948vPzyy5BKucAVmT4LCwnGdg1A3xaN8daW8zh8JQfv77yEvy9kYTlbf8jI7Y2vCT59W3AaOz0aowg+e/bsQWJiIhITE+Hr61vnsdqeOmtra3z11VeYOXMmVCoVgoKCsGTJErz66qtilEwkGm8XW6yb0AmbTqbivb8SEMfWHzJyybmluJRVDEsLCfq2bCx2OWTkjHYdH13hGB8yJRkF5Zi75TwOXalpJe0c2Agrnm0HfzcuaEnG4+tDSVj29yV0D5bj55e6iF0OGaj6fn6zo5TIhHm72OKHCZ3wfyPawN7GErHJ+Rj46WH8cjwF/J2HjMWui1kAgAGtPUWuhEwBgw+RiZNIJBjd2R+7Xu+Jzk0aoaxSibe3nseEH04gu6hC7PKIHiirsAJxKQWQSIABoRzfQ4+OwYfITPg1ssOGSV0xf3BL2FhZ4ODlHAz45DB2XcgUuzSi+9oTX9Pa09HfFY2dZCJXQ6aAwYfIjFhYSPBSjyDseK07Qr2ccKusCpN/Po1Zv51FcUWV2OUR3WXXhZrgM7AVu7lIOxh8iMxQMw9HbHu1G6b0bgqJBPj9VBqe+DQKJ5LzxS6NSC2/tBLHr9f8TA5g8CEtYfAhMlM2VhaYPbAFNv03Ar6utki7VY5RXx/F8t2XUKVUiV0eEf5JuAmlSkColxNnIpLWMPgQmblOgY3w9/QeeLqjL1QC8OWBJDy96giu5ZSIXRqZud213VyczUVaxOBDRHCUWWPlyHb4ckxHONta41xaIQZ/Fs1p7ySaEkU1oq7W7OXI4EPaxOBDRGqD23ph1+s90C3YDeVVNdPeJ/14CnklCrFLIzNz4FI2KpUqBMnt0YzbrZAWMfgQUR1ezrb46cUuNdPeLS3wT8JNDPgkCgcuZ4tdGpmROxctlEi4zQppD4MPEd2ldtr7tle7IcTDAbklCkxYewIL/7iAiiql2OWRiauoUuLApZqgzWnspG0MPkR0X6HeTvhzaneMjwwEAKw7egNDPo/GhfRCcQsjkxZ1NRdllUp4OcvQ1tdZ7HLIxDD4ENEDyawtsWhoK6x7sTPcHaW4ml2C4V/FYNXBJChVHPhM2rf9bAYA4InWXuzmIq1j8CGieukV4o7dr/fEgFYeqFIK+GDXJfzn22NIu1UmdmlkQsoqq7E3/iYAYGh7b5GrIVPE4ENE9dbI3garnw/Dh8+0rdnt/Xo+nvgkCptPpXHaO2nFPwnZKK9Swr+RHdqxm4t0gMGHiDQikUgwMtwPf0/vibAAVxQrqvHGb2fxys+nOe2dHlltN9eQduzmIt1g8CGiBvF3s8PGl7vizQHNYWUhwa6LWRjwSRT2JdwUuzQyUoXlVTh0OQcAMLSdj8jVkKli8CGiBrOytMCrfYKx7dVuaNa4Ztr7xHUnMef3c9ztnTS2+0IWKpUqNPdwRHNPR7HLIRPF4ENEj6y1jzO2v9YdL3VvAokE2HgyFQM/iUJMYq7YpZER+fN2NxcHNZMuMfgQkVbIrC0x/8lQ/DqpK/wa2SK9oBzPrTmOd7ZdQKmiWuzyyMBlF1fgSFJNUH6yrZfI1ZApY/AhIq3qGuSGXdN74vmu/gCAn47dwBOfRuHYtTyRKyND9vf5LKgEoJ2fCwLc7MUuh0wYgw8RaZ291ArvDWuDnyd2gbezDCn5ZRj9zTG8s+0CStj6Q/eg7uZqx24u0i0GHyLSme7N5Ng1oyf+09kPQE3rz4CPD+PwlRyRKyNDknarDKdu3IJEwm4u0j0GHyLSKSeZNZaNaIufJ3aBr2vN2J8Xvo/F7N/PorCMM78I2H42EwDQpUkjeDjJRK6GTB2DDxHpRfdmcux+vad6w9NNJ9PQ96ND2HEuk6s+m7n/dXNx7R7SPQYfItIbe6kVFg1thd8mR6Cpuz1ySxR49ZfTmPTjSWQUlItdHongQnohEjKLYGNpgSdae4pdDpkBBh8i0rtOgY2wc3oPTOvbDNaWEvyTkI1+Hx3CDzHXueO7mfn9VBoAoF8rD7ja24hcDZkDBh8iEoXUyhIz+4Vgx7Qe6OjvgtJKJRZtj8fwr2JwIb1Q7PJIDyqqlNgalw4AGBnuJ3I1ZC4YfIhIVCEejvh9ciTeG9YajjIrnEsrxNAvorHoz4vc9sLE/ZNwE4XlVfBylqF7sFzscshMMPgQkegsLCR4vmsA9r3RC0PbeUMlAD8cScbjHx3CX+cyOPjZRG06WdPN9UyYLywtuBM76QeDDxEZjMaOMnz2nw74aWJnBLrZ4WaRAlN/icML38fiWk6J2OWRFmUUlCPqas16Ts+E+YpcDZkTBh8iMjg9mrlj1+s98frjzWBjZYGoq7kY+EkUVuy+jPJKpdjlkRZsPpUGQQC6BjXiFhWkVww+RGSQZNaWeP3xEOyd0RO9QtxRqVThiwOJePyjQ9hzMYvdX0ZMpRLw2+3ZXBzUTPrG4ENEBi3AzR4/TOiE1c93hLezDOkF5Xj5p1OY8MMJJOeWil0eNcDx6/lIyS+Dg9QKT7TmFhWkXww+RGTwJBIJBrb2wj9v9MKU3k1hbSnBwcs56P/xYazcw+4vY/PbyVQAwJB23rC1sRS5GjI3DD5EZDTsbKwwe2AL7H69J3o0k6NSqcLn+2u6v3az+8soFFVUYeeFmr25RoZzUDPpH4MPERmdIHcH/PhiZ6x+viN8XGo2Pv3vT6cwfu0JXGf3l0H780wGKqpUCG7sgPZ+LmKXQ2aIwYeIjJK6+2tmL0ztEwwbSwscupKDAR8fxvLdl9j9ZYAEQcCPR5MBAKM7+UEi4do9pH8MPkRk1GxtLDFrQHPsvmP215cHkvD4R4ewN/6m2OXRHWIS83DlZgnsbSwxshNnc5E4GHyIyCQ0kdfO/gpTz/6a9ONJTPzhBFLzy8QujwCsjbkOoGbBQieZtcjVkLli8CEik1HT/eWJf97ohVduz/7adykbj390CF/sv4rKapXYJZqt5NxS7L+cDQB4ITJQ3GLIrBlN8Bk6dCj8/f0hk8ng5eWFsWPHIiMjo841KSkpGDJkCOzt7SGXyzFt2jRUVlaKVDERicXOxgpzBrbA39N7ICLIDYpqFVbsuYJBn0Uh9nq+2OWZpXVHkyEIQO/m7mjq7iB2OWTGjCb49OnTB5s2bcLly5exefNmJCUl4ZlnnlE/rlQqMXjwYJSWliI6OhobNmzA5s2b8cYbb4hYNRGJKbixI36Z1AWfjGoPN3sbJGaXYOTXRzH797O4VcpfivSluKIKv93ekHRCtyYiV0PmTiIY6cIXf/75J4YNGwaFQgFra2v8/fffePLJJ5Gamgpvb28AwIYNGzB+/HhkZ2fDycmpXq9bVFQEZ2dnFBYW1vs5RGT4Csoq8cGuS/g1tmbxPDd7GywYEoqh7bw5u0jH1sZcx+Lt8Wjqbo9/Zvbi/SadqO/nt9G0+NwpPz8f69evR2RkJKytawbIHT16FK1bt1aHHgAYMGAAFAoFTp06dd/XUigUKCoqqnMQkelxsbPBshFt8dvkCIR4OCCvtBLTN5zBS+tOIrOwXOzyTJZKJWDdkWQAwPjIQIYeEp1RBZ85c+bA3t4ebm5uSElJwR9//KF+LCsrCx4eHnWud3V1hY2NDbKysu77msuWLYOzs7P68PPjFEsiU9YpsBH+eq0HZjweoh783O+jw/jp2A2oVEbZAG7QDl7JRnJeGRxlVhjRkSs1k/hEDT6LFi2CRCJ54HHy5En19W+++Sbi4uKwZ88eWFpa4oUXXqizRP29fpMQBOGBv2HMnTsXhYWF6iM1NVW73yQRGRwbKwtMf7wZdkzrgQ7+LihRVOOdbRcwZs0xTn3XsrUxyQBqFiy0l1qJWwwRAFF/CqdOnYrRo0c/8JrAwED1n+VyOeRyOUJCQtCyZUv4+fnh2LFjiIiIgKenJ44fP17nubdu3UJVVdVdLUF3kkqlkEqlj/R9EJFxCvFwxO+TI/Hj0WR8uOsyjl3Lx4BPDuPtQS3xXBd/dss8onNpBYi6mgsLCfBCRKDY5RABEDn41AaZhqht6VEoFACAiIgILF26FJmZmfDy8gIA7NmzB1KpFGFhYdopmIhMjqWFBBO6NcFjLRrjzd/OITY5H/O3XcCuC1n44Jm28HGxFbtEo/XpP1cBAE+194FfIzuRqyGqYRSzumJjYxEbG4vu3bvD1dUV165dw4IFC5CZmYmLFy9CKpVCqVSiffv28PDwwPLly5Gfn4/x48dj2LBh+Pzzz+v9XpzVRWS+VCoBPxxJxoe7L6GiSgUHqRWWPNUKwzv4sPVHQ2dTC/DUlzGwkAD/zOyFIK7dQzpmUrO6bG1tsWXLFvTt2xfNmzfHiy++iNatW+PQoUPqbipLS0vs2LEDMpkM3bp1w8iRIzFs2DCsWLFC5OqJyFhYWEjwYvcm2DmtBzreHvszc9NZTP01DgVlXPdHE5/8cwUAMKyDD0MPGRSjaPHRJ7b4EBEAVCtVWHUwCZ/uu4pqlQBPJxlWjmyHbsEN6543J2dSCzDsyxhYWkjwz8xeaCK3F7skMgMm1eJDRKRvVpYWeK1vM2x+JRJBcntkFVXguTXH8f7OBO759RDq1p72Pgw9ZHAYfIiIHqCdnwv+mtYdY7r4AwC+OXwNz64+gpQ8Tnu/l9Mpt3Dwcg4sLSSY1jdY7HKI7sLgQ0T0EHY2Vnh/eBt8PTYMzrbWOJtWiEGfReGPM+lil2ZwamdyjejggwA3tvaQ4WHwISKqpwGtPLFzeg90CnRFiaIa0zecwezfz6K8Uil2aQbhdMotHLpS09oz9TG29pBhYvAhItKAj4stfp3UFdP6NoNEAmw6mYZhX8YgMbtE7NJEpVIJeO+veADA0x3Z2kOGi8GHiEhDVpYWmNkvBOtf6gJ3Ryku3yzG0C+isS3OfLu+fj+dhtMpBbCzscTMfs3FLofovhh8iIgaKLKpHDumdUdkUzeUVSrx+sYzmLvlHCqqzKvrq6CsEv/39yUAwOuPN4Ons0zkiojuj8GHiOgRNHaU4aeJXTD9dtfXr7GpGP7VESTnlopdmt6s2HMZ+aWVaNbYARO6NRG7HKIHYvAhInpElhYSzOgXgp9e7AI3exskZBZhyOfR2HUhU+zSdO58WiHWH08BACx5qjWsLfmxQoaNP6FERFrSvZkcO6bVzPoqVlRj8s+n8d5f8ahSmuaChyqVgPl/XIAgAMPaeyOiqZvYJRE9FIMPEZEWeTrL8Mukrni5ZxAAYE30dYz+5hgyC8tFrkz7Np5MxdnUAjhKrfD2oJZil0NULww+RERaZm1pgbcHtcTXY8PgKLXCqRu3MPizaBy+kiN2aVpzs6gCH+yqGdA8o18IGjtxQDMZBwYfIiIdGdDKE39N645W3k7IL63EuLWx+GjPZShVxr03dLVShdd+jUNBWRVCvZzwQkSA2CUR1RuDDxGRDgW42WPzK5F4ros/BAH4bH8ixn53HDnFCrFLa7CP9l5B7PV8OEit8MWYDrDigGYyIvxpJSLSMZm1JZYOb4NPR7eHnY0ljiTlYdBnUYi+mit2aRo7cCkbXx1MAgD839NtEOTuIHJFRJph8CEi0pOn2vvgz6nd0dzDETnFCoz9/jg+2HXJaGZ9ZRSUY8amMwCAFyIC8GRbb3ELImoABh8iIj0KbuyAP6Z2U3d9rTqYhJFfH0VqfpnYpT1QZbUKr/5yGgVlVWjj44x5gzmLi4wTgw8RkZ7Vdn2teq4jnGRWiEspwKDPorDldBoEwfAGPqtUAhb+eQFxKQVwlFnhq+c6QmplKXZZRA3C4ENEJJIn2nhh5/QeCAtwRXFFNWZuOouXfzplUAOfaxcp/DU2FRIJsPLZdvBrZCd2WUQNxuBDRCQiX1c7bHy5K94c0BzWlhLsjb+J/h8fwvazGWKXBpVKwNtbz+OX4ynq0NO/lafYZRE9EgYfIiKRWVla4NU+wdj+Ws2aP7fKqvDar3GY/NMppBeIs+KzSiXgrS3nsOFEKiwkwEcj22FER19RaiHSJgYfIiID0cLTCdte7YbpfZvBykKCXRez0HflQXy27yoqqpR6q6OyWoXZm89h08k0WEiAj0e1x/AODD1kGiSCIY6kE1FRURGcnZ1RWFgIJycnscshIjOVkFmEhX9eROz1fACAXyNbzB8civ6hHpBIJDp73/iMIrzx21kkZBbB0kKCT0a1x5B2nLZOhq++n98MPv/C4ENEhkIQBGw/l4n3dyQgq6gCANDO1xmTezVF/1aesLTQXgCqVqqw+lASPt13FVVKAY3sbfDh023xeKiH1t6DSJcYfBqIwYeIDE2pohpfHkjEd9HXoaiuWewwSG6Pl3sGYXhHn0eaWi4IAs6kFmDRnxdxNq0QANA/1ANLh7eBu6NUK/UT6QODTwMx+BCRocotUWDdkWT8ePQGCsurAAAudtZ4rHlj9Av1QM8Qd9hLrer1Wvmlldgal47fTqbiUlYxAMBJZoXFT7XCsPY+Ou1OI9IFBp8GYvAhIkNXoqjGhtgUrIm6ru4CAwAbKwtENnVDcw9HeDnL4OViC29nW9hYWSC9oAzpBRVIv1WOxOwSHLqSjSqloH7ek228MHtgC3g6y8T6togeCYNPAzH4EJGxqFaqcPLGLfwTfxN7E27iRp5m21608XHGyE5+GNrWG8521jqqkkg/GHwaiMGHiIyRIAhIzC7B4au5SLtVhsyCCmQWVSCzoByVShW8nW3h42oLH5eao1uwHKHe/D+OTEd9P7/r1xlMREQGTSKRoJmHI5p5OIpdCpFB4wKGREREZDYYfIiIiMhsMPgQERGR2WDwISIiIrPB4ENERERmg8GHiIiIzAaDDxEREZkNBh8iIiIyGww+REREZDYYfIiIiMhsMPgQERGR2TCa4DN06FD4+/tDJpPBy8sLY8eORUZGRp1rJBLJXcfq1atFqpiIiIgMjdEEnz59+mDTpk24fPkyNm/ejKSkJDzzzDN3Xbd27VpkZmaqj3HjxolQLRERERkio9mdfcaMGeo/BwQE4K233sKwYcNQVVUFa2tr9WMuLi7w9PSs9+sqFAooFAr110VFRdopmIiIiAyORBAEQewiNJWfn49XXnkF6enpiI6OVp+XSCTw8fFBRUUFmjRpgokTJ+Lll1+GhcX9G7YWLVqExYsX33U+NTUVTk5OOqmfiIiItKuoqAh+fn4oKCiAs7Pz/S8UjMjs2bMFOzs7AYDQtWtXITc3t87j7777rnDkyBEhLi5OWLFihWBnZye8++67D3zNiooKobCwUH3Ex8cLAHjw4MGDBw8eRnikpqY+8HNf1Baf+7W23OnEiRMIDw8HAOTm5iI/Px83btzA4sWL4ezsjL/++gsSieSez125ciWWLFmCwsLCetekUqmQkZEBR0fH+76uJmoTKFuQdI/3Wn94r/WH91p/eK/1Rxf3WhAEFBcXw9vb+4E9PaIGn9zcXOTm5j7wmsDAQMhksrvOp6Wlwc/PD0eOHEFERMQ9nxsTE4Pu3bsjKysLHh4eWqlZU0VFRXB2dkZhYSH/IekY77X+8F7rD++1/vBe64+Y91rUwc1yuRxyubxBz63Na3cOTP63uLg4yGQyuLi4NOg9iIiIyLQYxayu2NhYxMbGonv37nB1dcW1a9ewYMECNG3aVN3as337dmRlZSEiIgK2trY4cOAA5s2bh5dffhlSqVTk74CIiIgMgVEEH1tbW2zZsgULFy5EaWkpvLy8MHDgQGzYsEEdaqytrfHVV19h5syZUKlUCAoKwpIlS/Dqq6+KWrtUKsXChQsZvvSA91p/eK/1h/daf3iv9UfMe22U09mJiIiIGsJoVm4mIiIielQMPkRERGQ2GHyIiIjIbDD4EBERkdlg8NGCr776Ck2aNIFMJkNYWBiioqIeeP2hQ4cQFhYGmUyGoKAgrF69Wk+VGj9N7vWWLVvQr18/uLu7w8nJCREREdi9e7ceqzVumv5c14qJiYGVlRXat2+v2wJNiKb3WqFQYN68eQgICIBUKkXTpk3x/fff66la46bpvV6/fj3atWsHOzs7eHl5YcKECcjLy9NTtcbr8OHDGDJkCLy9vSGRSLBt27aHPkdvn40N3jiLBEEQhA0bNgjW1tbCt99+K8THxwvTp08X7O3thRs3btzz+mvXrgl2dnbC9OnThfj4eOHbb78VrK2thd9//13PlRsfTe/19OnThQ8++ECIjY0Vrly5IsydO1ewtrYWTp8+refKjY+m97pWQUGBEBQUJPTv319o166dfoo1cg2510OHDhW6dOki7N27V7h+/bpw/PhxISYmRo9VGydN73VUVJRgYWEhfPrpp8K1a9eEqKgooVWrVsKwYcP0XLnx2blzpzBv3jxh8+bNAgBh69atD7xen5+NDD6PqHPnzsLkyZPrnGvRooXw1ltv3fP62bNnCy1atKhz7r///a/QtWtXndVoKjS91/cSGhoqLF68WNulmZyG3utRo0YJ8+fPFxYuXMjgU0+a3uu///5bcHZ2FvLy8vRRnknR9F4vX75cCAoKqnPus88+E3x9fXVWoymqT/DR52cju7oeQWVlJU6dOoX+/fvXOd+/f38cOXLkns85evToXdcPGDAAJ0+eRFVVlc5qNXYNudf/plKpUFxcjEaNGumiRJPR0Hu9du1aJCUlYeHChbou0WQ05F7/+eefCA8Px4cffggfHx+EhIRg1qxZKC8v10fJRqsh9zoyMhJpaWnYuXMnBEHAzZs38fvvv2Pw4MH6KNms6POz0ShWbjZUubm5UCqVd22A6uHhgaysrHs+514bpnp4eKC6uhq5ubnw8vLSWb3GrCH3+t9WrlyJ0tJSjBw5UhclmoyG3OurV6/irbfeQlRUFKys+N9KfTXkXl+7dg3R0dGQyWTYunUrcnNzMWXKFOTn53OczwM05F5HRkZi/fr1GDVqFCoqKlBdXY2hQ4fi888/10fJZkWfn41s8dECiURS52tBEO4697Dr73We7qbpva7166+/YtGiRdi4cSMaN26sq/JMSn3vtVKpxJgxY7B48WKEhIToqzyTosnPtUqlgkQiwfr169G5c2cMGjQIH330EX744Qe2+tSDJvc6Pj4e06ZNw4IFC3Dq1Cns2rUL169fx+TJk/VRqtnR12cjfzV7BHK5HJaWlnf9tpCdnX1Xcq3l6el5z+utrKzg5uams1qNXUPuda2NGzdi4sSJ+O233/D444/rskyToOm9Li4uxsmTJxEXF4epU6cCqPlwFgQBVlZW2LNnDx577DG91G5sGvJz7eXlBR8fHzg7O6vPtWzZEoIgIC0tDc2aNdNpzcaqIfd62bJl6NatG958800AQNu2bWFvb48ePXrgvffeYwu9Funzs5EtPo/AxsYGYWFh2Lt3b53ze/fuRWRk5D2fExERcdf1e/bsQXh4OKytrXVWq7FryL0Galp6xo8fj19++YX98vWk6b12cnLC+fPncebMGfUxefJkNG/eHGfOnEGXLl30VbrRacjPdbdu3ZCRkYGSkhL1uStXrsDCwgK+vr46rdeYNeRel5WVwcKi7sekpaUlgP+1RpB26PWzUevDpc1M7fTI7777ToiPjxdef/11wd7eXkhOThYEQRDeeustYezYserra6fszZgxQ4iPjxe+++47TmevJ03v9S+//CJYWVkJX375pZCZmak+CgoKxPoWjIam9/rfOKur/jS918XFxYKvr6/wzDPPCBcvXhQOHTokNGvWTHjppZfE+haMhqb3eu3atYKVlZXw1VdfCUlJSUJ0dLQQHh4udO7cWaxvwWgUFxcLcXFxQlxcnABA+Oijj4S4uDj10gFifjYy+GjBl19+KQQEBAg2NjZCx44dhUOHDqkfGzdunNCrV6861x88eFDo0KGDYGNjIwQGBgqrVq3Sc8XGS5N73atXLwHAXce4ceP0X7gR0vTn+k4MPprR9F4nJCQIjz/+uGBrayv4+voKM2fOFMrKyvRctXHS9F5/9tlnQmhoqGBrayt4eXkJzz33nJCWlqbnqo3PgQMHHvj/r5ifjRJBYHsdERERmQeO8SEiIiKzweBDREREZoPBh4iIiMwGgw8RERGZDQYfIiIiMhsMPkRERGQ2GHyIiIjIbDD4EBERkdlg8CEis7Vo0SK0b99ep++RnJwMiUSCM2fO6PR9iKh+GHyISCPjx4+HRCLB5MmT73psypQpkEgkGD9+vP4LewiJRIJt27bVOTdr1izs27dPa+8xfvx4DBs2rM45Pz8/ZGZmonXr1lp7HyJqOAYfItKYn58fNmzYgPLycvW5iooK/Prrr/D39xexMs04ODjAzc1Np+9haWkJT09PWFlZ6fR9iKh+GHyISGMdO3aEv78/tmzZoj63ZcsW+Pn5oUOHDupzu3btQvfu3eHi4gI3Nzc8+eSTSEpKqvNaR44cQfv27SGTyRAeHo5t27bV6Ro6ePAgJBIJ9u3bh/DwcNjZ2SEyMhKXL1+u8zrbt29HWFgYZDIZgoKCsHjxYlRXVwMAAgMDAQDDhw+HRCJRf/3vri6JRHLXUXutUqnExIkT0aRJE9ja2qJ58+b49NNP1c9dtGgR1q1bhz/++EP93IMHD96zq+vQoUPo3LkzpFIpvLy88NZbb6lrBYDevXtj2rRpmD17Nho1agRPT08sWrRIk78iIroPBh8iapAJEyZg7dq16q+///57vPjii3WuKS0txcyZM3HixAns27cPFhYWGD58OFQqFQCguLgYQ4YMQZs2bXD69Gm8++67mDNnzj3fb968eVi5ciVOnjwJKyurOu+1e/duPP/885g2bRri4+Px9ddf44cffsDSpUsBACdOnAAArF27FpmZmeqv/y0zM1N9JCYmIjg4GD179gQAqFQq+Pr6YtOmTYiPj8eCBQvw9ttvY9OmTQBqus1GjhyJgQMHql8jMjLyrvdIT0/HoEGD0KlTJ5w9exarVq3Cd999h/fee6/OdevWrYO9vT2OHz+ODz/8EEuWLMHevXvv/xdCRPWjkz3fichkjRs3TnjqqaeEnJwcQSqVCtevXxeSk5MFmUwm5OTkCE899ZQwbty4ez43OztbACCcP39eEARBWLVqleDm5iaUl5err/n2228FAEJcXJwgCIJw4MABAYDwzz//qK/ZsWOHAED9vB49egjvv/9+nff66aefBC8vL/XXAIStW7fWuWbhwoVCu3bt7qpTpVIJw4cPF8LCwoSysrL73ospU6YITz/99F335k7Xr1+v8/28/fbbQvPmzQWVSqW+5ssvvxQcHBwEpVIpCIIg9OrVS+jevXud1+nUqZMwZ86c+9ZCRPXDTmciahC5XI7Bgwdj3bp1EAQBgwcPhlwur3NNUlIS3nnnHRw7dgy5ubnqlp6UlBS0bt0aly9fRtu2bSGTydTP6dy58z3fr23btuo/e3l5AQCys7Ph7++PU6dO4cSJE+oWHqCma6qiogJlZWWws7PT6Ht7++23cfToUZw4cQK2trbq86tXr8aaNWtw48YNlJeXo7KyUuNZYQkJCYiIiIBEIlGf69atG0pKSpCWlqYeI3Xn91v7PWdnZ2v0XkR0NwYfImqwF198EVOnTgUAfPnll3c9PmTIEPj5+eHbb7+Ft7c3VCoVWrdujcrKSgCAIAh1AkDtuXuxtrZW/7n2ObVBSqVSYfHixRgxYsRdz7szVNXHzz//jI8//hgHDx6Er6+v+vymTZswY8YMrFy5EhEREXB0dMTy5ctx/PhxjV7/Qd/znefv/H5rH6v9fomo4Rh8iKjBBg4cqA4xAwYMqPNYXl4eEhIS8PXXX6NHjx4AgOjo6DrXtGjRAuvXr4dCoYBUKgUAnDx5UuM6OnbsiMuXLyM4OPi+11hbW0OpVD7wdY4ePYqXXnoJX3/9Nbp27VrnsaioKERGRmLKlCnqc/8eqG1jY/PQ9wgNDcXmzZvrBKAjR47A0dERPj4+D3wuET06Dm4mogaztLREQkICEhISYGlpWecxV1dXuLm54ZtvvkFiYiL279+PmTNn1rlmzJgxUKlUePnll5GQkIDdu3djxYoVAHBXq8iDLFiwAD/++CMWLVqEixcvIiEhARs3bsT8+fPV1wQGBmLfvn3IysrCrVu37nqNrKwsDB8+HKNHj8aAAQOQlZWFrKws5OTkAACCg4Nx8uRJ7N69G1euXME777xz1yDpwMBAnDt3DpcvX0Zubi6qqqruep8pU6YgNTUVr732Gi5duoQ//vgDCxcuxMyZM2Fhwf+SiXSN/8qI6JE4OTnBycnprvMWFhbYsGEDTp06hdatW2PGjBlYvnz5Xc/dvn07zpw5g/bt22PevHlYsGABAM26qAYMGIC//voLe/fuRadOndC1a1d89NFHCAgIUF+zcuVK7N27964p97UuXbqEmzdvYt26dfDy8lIfnTp1AgBMnjwZI0aMwKhRo9ClSxfk5eXVaf0BgEmTJqF58+YIDw+Hu7s7YmJi7nofHx8f7Ny5E7GxsWjXrh0mT56MiRMn1glpRKQ7EuF+HepERCJYv349JkyYgMLCwjoDi4mItIFjfIhIVD/++COCgoLg4+ODs2fPYs6cORg5ciRDDxHpBIMPEYkqKysLCxYsQFZWFry8vPDss8/WmZZORKRN7OoiIiIis8HBzURERGQ2GHyIiIjIbDD4EBERkdlg8CEiIiKzweBDREREZoPBh4iIiMwGgw8RERGZDQYfIiIiMhv/D6lExxkKkYw4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -329,7 +487,7 @@ "source": [ "plt.xlabel(\"Magnetization\")\n", "plt.ylabel(\"Free energy eV\")\n", - "plt.plot(meta[\"magnetization\"], meta[\"free_energy\"])" + "plt.plot(meta[\"magnetization\"], np.mean(F_list, axis=0));" ] }, { @@ -337,7 +495,7 @@ "id": "b8bf7959-f89f-43a1-ba9f-ca4e30678c2d", "metadata": {}, "source": [ - "The free energy minimum shows the most stable state. In this case it is around 0.5. Metadynamics, however, often requires a meticulous sampling, meaning with the standard energy increment of 0.001, you might overshoot and miss the global minimum. For a real measurement, it is recommended to make it as small as possible, meaning you should estimate the amount of time needed to run your calculation with Metadynamics with a small energy increment value and see what would be an acceptable total computation time." + "The free energy minimum shows the most stable state. In this case it is around 0.6. Metadynamics, however, often requires a meticulous sampling, meaning with the standard energy increment of 0.001, you might overshoot and miss the global minimum. For a real measurement, it is recommended to make it as small as possible, meaning you should estimate the amount of time needed to run your calculation with Metadynamics with a small energy increment value and see what would be an acceptable total computation time." ] }, { @@ -365,7 +523,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/notebooks/fitting.ipynb b/notebooks/fitting.ipynb new file mode 100644 index 0000000..89ab13c --- /dev/null +++ b/notebooks/fitting.ipynb @@ -0,0 +1,544 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5db03a01", + "metadata": {}, + "source": [ + "# Fitting of Heisenberg parameters using pyiron\n", + "\n", + "In this notebook, I explain how to find the Heisenberg parameters for bcc Fe up to the second shell. It has the following two (obvious) steps:\n", + "\n", + "1. Launch DFT calculations with ferromagnetic and anti-ferromagnetic states\n", + "2. Fit the Heisenberg parameters using Linear Regression\n", + "\n", + "Note:\n", + "\n", + "Although this notebook presents a complete workflow, several points require more detailed analysis. Refer to the conclusion section for further information." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "5f44407e", + "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_atomistics import Project\n", + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "from tqdm.auto import tqdm\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ad16cf28", + "metadata": {}, + "outputs": [], + "source": [ + "pr = Project(\"FIT\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6d7d086a", + "metadata": {}, + "outputs": [], + "source": [ + "bulk = pr.create.structure.bulk(\"Fe\", cubic=True, a=2.83)" + ] + }, + { + "cell_type": "markdown", + "id": "e695b505", + "metadata": {}, + "source": [ + "## Creation of dataset\n", + "\n", + "In this notebook, we are going to create three types of magnetic structures: ferromagnetic, anti-ferromagnetic and double-layer anti-ferromagnetic structures. These structures deliver different energy values, and therefore would allow us to fit different $J_{ij}$ values" + ] + }, + { + "cell_type": "markdown", + "id": "a24aae54", + "metadata": {}, + "source": [ + "### First case: ferromagnetic" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "46819bc4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:59: LockedWarning: __setitem__ called on , but object is locked!\n", + " warnings.warn(\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:59: LockedWarning: __setattr__ called on , but object is locked!\n", + " warnings.warn(\n", + "2024-06-14 06:46:44,514 - pyiron_log - WARNING - The job ferro is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:97: UserWarning: Unlock previously locked object!\n", + " self.owner.read_only = False\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:320: UserWarning: Unlock previously locked object!\n", + " it.read_only = False\n" + ] + } + ], + "source": [ + "spx_f = pr.create.job.Sphinx(\"ferro\")\n", + "spx_f.structure = bulk.copy()\n", + "spx_f.structure.set_initial_magnetic_moments(len(bulk) * [2])\n", + "spx_f.set_encut(500)\n", + "spx_f.set_kpoints(k_mesh_spacing=0.15)\n", + "spx_f.run()" + ] + }, + { + "cell_type": "markdown", + "id": "94d07faf", + "metadata": {}, + "source": [ + "### Second case: anti-ferromagnetic" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ad47a7c1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:59: LockedWarning: __setitem__ called on , but object is locked!\n", + " warnings.warn(\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:59: LockedWarning: __setattr__ called on , but object is locked!\n", + " warnings.warn(\n", + "2024-06-14 06:46:50,358 - pyiron_log - WARNING - The job antiferro is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:97: UserWarning: Unlock previously locked object!\n", + " self.owner.read_only = False\n", + "/home/jovyan/dev/pyiron_base/pyiron_base/interfaces/lockable.py:320: UserWarning: Unlock previously locked object!\n", + " it.read_only = False\n" + ] + } + ], + "source": [ + "spx_af = pr.create.job.Sphinx(\"antiferro\")\n", + "spx_af.structure = bulk.copy()\n", + "layers = spx_af.structure.analyse.get_layers(planes=[0, 0, 1])\n", + "spx_af.structure.set_initial_magnetic_moments(2 - 4 * (layers % 2 == 1))\n", + "spx_af.set_encut(500)\n", + "spx_af.set_kpoints(k_mesh_spacing=0.15)\n", + "spx_af.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a0222db8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9uUlEQVR4nO3deXxU5d3///dJMpkkJCFAyIKGAD8VFFxYbhVcgNqgoNatKsWNYr1LKTcg9bbSKoItorZFtChIq0alKLdFLC4VUhSoIreIpnIrpfYnGoVgWLOSyWTmfP+YZJJJJiETZs4wOa/n4zGPmXOdc675zKUwb66zjGGapikAAACbiot2AQAAANFEGAIAALZGGAIAALZGGAIAALZGGAIAALZGGAIAALZGGAIAALaWEO0CTnRer1d79+5VWlqaDMOIdjkAAKADTNNUZWWl+vTpo7i49ud+CEPHsHfvXuXl5UW7DAAA0Alff/21Tj755Ha3IQwdQ1pamiTfYKanp4e1b7fbrfXr12vcuHFyOBxh7RtNGGdrMM7WYJytwThbI5LjXFFRoby8PP/3eHsIQ8fQeGgsPT09ImEoJSVF6enp/GGLIMbZGoyzNRhnazDO1rBinDtyigsnUAMAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDAEAAFsjDKHDPF5TZRW1qnV7ol0KAABhw6/Ww6/W7dGeI0e15/BR7T1y1P/6myO+5X3ltar3mpKknt0Slds9Sbndk3VSRpJyM5KV2z1JJ2UkKzcjWdlpTiXEk7UBACc+wpBNmKap8qNufXP4aOvA0xB2DlTVdbi/Q9V1OlRdp0/3VgRdH2dI2elJvsCUkewLSf7wlKzcjCT16pYowzDC9REBAOgUwlAX4fGa+rai1h9wGkPP3obgs+fIUdXUHfvwVkpivE7KSNZJPXyhpU9Gsk5u9jo7PUlVtfXac+SoSsuPam+57z1LjzS9/raiVm6PqdLyWpWW10olR4K+lzMhzh+Q+mQkq09G4+sk9WkIT2lJjjCPFAAAgQhDMSKUQ1jtyUxNVJ+GmZrGgNMYfE7ukazuyY5jztZ0T3Goe4pDZ/RJD7re6zV1oMrVEJh8AWnvkdqA8LS/0iVXvVdfHqzRlwdr2nyvtKQE9enum0nqk5GsPi3CU073JDkT4o/5uU8kpmnK7THlqveort4rV723xbOvPSE+Tt2c8Up1JiglMUGpzgQlOeKYTQOAMIupMLR582b95je/0fbt21VaWqo1a9bo6quvbnP7jRs3auzYsa3ad+7cqUGDBkWw0tCYpqkjNXXHfQgrIc5QTsN5Oy1ndxpfJzkiHxzi4gxlpScpKz1JQ9vYpq7eq28raptmmI40zDD5w9NRVdTWq7K2XrtqK7Xr28o23y8z1dkwq9QYmJqHp2RlJPnOXfJ6TdW6PXI1CxxtBZHG5cY2V0e29bTfb/M+Oj22htQtMUHdnAnq5oz3PbdY9oUnX4jq1uK1b9uGgOVMUIojXnFxhCsA9hZTYai6ulpnn322fvjDH+q6667r8H67du1SenrTLEbv3r0jUV5I1v5jr1Z/+LV2fROvOdvfDtshrPgY+WJLTIhTXs8U5fVMaXObale9SsuPas+R2oDDcKXlR1V6xBekXPVeHahy6UCVS598Ux60n/g4QzLjNfP9okh9nOPiiDfkTIhXYkKcnAlxSkyIU2J8nOq9pqpc9ap21fv///CaUqWrXpWu+rC9f7fEeKU0hKhuznj/LJQvPDUErmavW4atxhDmjDPVgclJADjhxFQYGj9+vMaPHx/yfllZWcrIyAh/Qcdh75Gj2vT5AUmGJN8XXctDWCf1SPYvd/QQVlfSzZmgU7LSdEpWWtD1pmnqcI3bP5NUWl6rvQ2zTKUNy/sqauXxmvKNc6DG4OFMiJezWRBp3t4YTJyO5s/xLZbj5HTEyxkffP+2+nU29N2RmRmv11SN26PqhnBU7fKoylWvmrr6hmffusbXVc22q3bVq7qu9XJjcKmu86i6zqP9la7j+c8lSYoz4vXQZ5uUlZak3mlO9U51Kivd6X/dO83pX5ecGFuHNwF0XTEVhjpr6NChqq2t1RlnnKF777036KGzRi6XSy5X05dCRYXvaim32y232x22mi4c0EMPXDFQpf//Z7pi7Cj1zUw95iGs+vrwzQZ0FWmJhgZmpWhgVvAZJo/XVOnham3evFmXjB2tlCSnnAlxcsQbJ0Cw9Mrj8crTwds2OeMkZ3K8eiYff4gwTVO1bq8vJNV5/EGppq4hMPnbPf6ZKV+IaljXvL1hud5rymsa+rbCpW8rjh2sujnjlZXqVGaaU71TE5WZ6lRWmlOZqYnNwlOieqQkxsyMpxUa/x4K599HaI1xtkYkxzmUPg3TNGNyYtswjGOeM7Rr1y5t3rxZw4cPl8vl0gsvvKBly5Zp48aNuvjii4PuM2/ePM2fP79V+8qVK5WS0vYhHcDOTFOqN6Vqt1TplsrdhirrpAq3VFlnqNwtVboNVTS0ub0dDzeGTKU5pPREKc1hKt0hpSVK3R2m0hKl9Ia29ETJyWQTgAY1NTWaNGmSysvLA06VCaZLh6FgrrzyShmGobVr1wZdH2xmKC8vTwcOHDjmYIbK7XarqKhIBQUFcji4hDxSGGdrdHScTdNUlcujA1Uu7a9yaX9lnfZXuXSgsk5lVS4dqHRpf1WdDlS5dLC6TqH8DZWSGK/M1MSGGaamGafeab5ZpsZDdT1THDF7U9BY+P/ZNH3nj3kbntXwbMqUaUoNTVKL5cb1vjW+xqZ1vn6b9g1cbr1vs/drsb+C1hLYh9tdr63/u1Xnnnue4uLj/ft5m72nt2Fjs0V7U12Nn7uhzWyq1duwnST/a7PhtfyvzcDaG1631y75TgqIMwwZhu+7svmyb5LVUJwRbBvf67gg+xnN1/nbm/o01LRdnGH41qvlfi23kerrPdr6/hZd/t3Rys7odpz/5wWqqKhQZmZmh8KQLQ6TNXf++edrxYoVba53Op1yOp2t2h0OR8T+4olk32jCOFujI+PcM1HqmZas047RV73Hq0PVdSqrbAhOFY0ByqWyylrtr3T5H9V1HtXUeVRy6KhKDh1tt1/DkHp18wWltKQEGUHOKetgk4IdbQ3WX9DtOrGv12vqwIE4rfr2HzJlNPsSbgogjV/IzQNJ45embznwC91rmvI2XOToXzbVrJ+mvtSsz7beu+tIkHZsj3YRNpCgQ+l7NefyM8Laayh/39suDH388cfKzc2NdhkAOiAhPs5/m4ZjqXbV+4JRY1iqqG0WnJpC04Eql7ymdKCqLqS7rp9Y4qTyQ9EuwjJGw2xE43l+/hkH+VY0X26+bcMkSNNyi3VG4wYB79EYSE3V1taqW0pysxkQI2hfgbMeTX3HtXzPgFmVwJkSQ4bi4trpp7G2oP0H7tM0e9QUgH3PkprNSvkDrppv0zSD1Rh2mwdsU4H9BbyHWgdmU4FB22wRoj1eU3V1dVG/oCKmwlBVVZX+/e9/+5d3796t4uJi9ezZU3379tWcOXO0Z88ePf/885KkxYsXq1+/fho8eLDq6uq0YsUKrV69WqtXr47WRwAQIY23AOiX2f5Uu8dr6lB1nX926WiQ21oEm9wINuNhBtky+HbB+uvYFErLzeo9HhUXF2vY0HPkSEgIOOTQ/NBGXFyL5YZtZAQuNx3GCPxS9/cho9Xhk5aHWOJafDHHNXsPGQqorfmXt1ostwwq0bzIwe12680339SECRczoxxB/nEeMyCqdcRUGPrwww8DrgSbPXu2JOm2225TYWGhSktLVVJS4l9fV1enu+66S3v27FFycrIGDx6sN954QxMmTLC8dgAnhvg4o+EcIqfOUHjPA7SC2+2WY8/HmnBWLl/SQJjEVBgaM2ZMu/+aKiwsDFi+++67dffdd0e4KgAAEMti83IKAACAMCEMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAW4upMLR582ZdeeWV6tOnjwzD0KuvvnrMfTZt2qThw4crKSlJAwYM0LJlyyJfKAAAiBkxFYaqq6t19tlna8mSJR3afvfu3ZowYYIuuugiffzxx/rFL36hGTNmaPXq1RGuFAAAxIqEaBcQivHjx2v8+PEd3n7ZsmXq27evFi9eLEk6/fTT9eGHH+q3v/2trrvuuqD7uFwuuVwu/3JFRYUkye12y+12d774IBr7C3e/CMQ4W4NxtgbjbA3G2RqRHOdQ+jRM0zTDXoEFDMPQmjVrdPXVV7e5zcUXX6yhQ4fqscce87etWbNGN9xwg2pqauRwOFrtM2/ePM2fP79V+8qVK5WSkhKW2gEAQGTV1NRo0qRJKi8vV3p6ervbxtTMUKj27dun7OzsgLbs7GzV19frwIEDys3NbbXPnDlzNHv2bP9yRUWF8vLyNG7cuGMOZqjcbreKiopUUFAQNJghPBhnazDO1mCcrcE4WyOS49x4ZKcjunQYknwzSM01ToS1bG/kdDrldDpbtTscjoj9gYhk32jCOFuDcbYG42wNxtkakRjnUPqLqROoQ5WTk6N9+/YFtJWVlSkhIUG9evWKUlUAAOBE0qXD0MiRI1VUVBTQtn79eo0YMYKkDwAAJMVYGKqqqlJxcbGKi4sl+S6dLy4uVklJiSTf+T633nqrf/upU6fqq6++0uzZs7Vz504988wzevrpp3XXXXdFo3wAAHACiqlzhj788EONHTvWv9x4ovNtt92mwsJClZaW+oORJPXv319vvvmm7rzzTj3xxBPq06ePHn/88TYvqwcAAPYTU2FozJgxau9OAIWFha3aRo8erY8++iiCVQEAgFgWU4fJAAAAwo0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbI0wBAAAbC3kMBQfH6+ysrJW7QcPHlR8fHxYigIAALBKyGHINM2g7S6XS4mJicddEAAAgJUSOrrh448/LkkyDEN//OMflZqa6l/n8Xi0efNmDRo0KPwVAgAARFCHw9Cjjz4qyTcztGzZsoBDYomJierXr5+WLVsW/gpbePLJJ/Wb3/xGpaWlGjx4sBYvXqyLLroo6LYbN27U2LFjW7Xv3LmT4AYAACSFEIZ2794tSRo7dqxeeeUV9ejRI2JFtWXVqlWaNWuWnnzySV1wwQV66qmnNH78eH322Wfq27dvm/vt2rVL6enp/uXevXtbUS4AAIgBIZ8z9M4770QlCEnSokWLdPvtt+tHP/qRTj/9dC1evFh5eXlaunRpu/tlZWUpJyfH/+BEbwAA0KjDM0ONPB6PCgsLtWHDBpWVlcnr9Qasf/vtt8NWXHN1dXXavn277rnnnoD2cePGacuWLe3uO3ToUNXW1uqMM87QvffeG/TQWSOXyyWXy+VfrqiokCS53W653e7j+AStNfYX7n4RiHG2BuNsDcbZGoyzNSI5zqH0GXIYmjlzpgoLC3X55ZdryJAhMgwj1C465cCBA/J4PMrOzg5oz87O1r59+4Luk5ubq+XLl2v48OFyuVx64YUXdMkll2jjxo26+OKLg+6zcOFCzZ8/v1X7+vXrlZKScvwfJIiioqKI9ItAjLM1GGdrMM7WYJytEYlxrqmp6fC2htnWtfJtyMzM1PPPP68JEyaEXNjx2Lt3r0466SRt2bJFI0eO9LcvWLBAL7zwgv75z392qJ8rr7xShmFo7dq1QdcHmxnKy8vTgQMHAs47Cge3262ioiIVFBTI4XCEtW80YZytwThbg3G2BuNsjUiOc0VFhTIzM1VeXn7M7++QZ4YSExN1yimndLq4zsrMzFR8fHyrWaCysrJWs0XtOf/887VixYo21zudTjmdzlbtDocjYn8gItk3mjDO1mCcrcE4W4NxtkYkxjmU/kI+gfpnP/uZHnvssTZvvhgpiYmJGj58eKuptKKiIo0aNarD/Xz88cfKzc0Nd3kAACBGhTwz9O677+qdd97RX//6Vw0ePLhV8nrllVfCVlxLs2fP1i233KIRI0Zo5MiRWr58uUpKSjR16lRJ0pw5c7Rnzx49//zzkqTFixerX79+Gjx4sOrq6rRixQqtXr1aq1evjliNAAAgtoQchjIyMnTNNddEopZjuvHGG3Xw4EE98MADKi0t1ZAhQ/Tmm28qPz9fklRaWqqSkhL/9nV1dbrrrru0Z88eJScna/DgwXrjjTcsP98JAACcuEIOQ88++2wk6uiwadOmadq0aUHXFRYWBizffffduvvuuy2oCgAAxKqQzxmSpPr6ev3tb3/TU089pcrKSkm+q72qqqrCWhwAAECkhTwz9NVXX+myyy5TSUmJXC6XCgoKlJaWpkceeUS1tbWW/D4ZAABAuIQ8MzRz5kyNGDFChw8fVnJysr/9mmuu0YYNG8JaHAAAQKR16mqy9957T4mJiQHt+fn52rNnT9gKAwAAsELIM0Ner1cej6dV+zfffKO0tLSwFAUAAGCVkMNQQUGBFi9e7F82DENVVVW6//77uWQdAADEnJAPkz366KMaO3aszjjjDNXW1mrSpEn6/PPPlZmZqRdffDESNQIAAERMyGGoT58+Ki4u1osvvqiPPvpIXq9Xt99+u2666aaAE6oBAABiQchhSJKSk5M1ZcoUTZkyJdz1AAAAWKpTYWjPnj167733VFZWJq/XG7BuxowZYSkMAADACp36OY6pU6cqMTFRvXr1kmEY/nWGYRCGAABATAk5DM2dO1dz587VnDlzFBfXqV/zAAAAOGGEnGZqamo0ceJEghAAAOgSQk40t99+u15++eVI1AIAAGC5kA+TLVy4UFdccYXeeustnXnmmXI4HAHrFy1aFLbiAAAAIi3kMPTggw9q3bp1GjhwoCS1OoEaAAAgloQchhYtWqRnnnlGkydPjkA5AAAA1gr5nCGn06kLLrggErUAAABYLuQwNHPmTP3+97+PRC0AAACWC/kw2QcffKC3335br7/+ugYPHtzqBOpXXnklbMUBAABEWshhKCMjQ9dee20kagEAALBcp36OAwAAoKvo1A+1StL+/fu1a9cuGYah0047Tb179w5nXQAAAJYI+QTq6upqTZkyRbm5ubr44ot10UUXqU+fPrr99ttVU1MTiRoBAAAiJuQwNHv2bG3atEmvvfaajhw5oiNHjugvf/mLNm3apJ/97GeRqBEAACBiQj5Mtnr1av35z3/WmDFj/G0TJkxQcnKybrjhBi1dujSc9QEAAERUp361Pjs7u1V7VlYWh8kAAEDMCTkMjRw5Uvfff79qa2v9bUePHtX8+fM1cuTIsBYHAAAQaSEfJnvsscd02WWX6eSTT9bZZ58twzBUXFyspKQkrVu3LhI1AgAAREzIYWjIkCH6/PPPtWLFCv3zn/+UaZqaOHGibrrpJiUnJ0eiRgAAgIjp1H2GkpOTdccdd4S7FgAAAMt1Kgzt2bNH7733nsrKyuT1egPWzZgxIyyFAQAAWKFTP8cxdepUJSYmqlevXjIMw7/OMAzCEAAAiCkhh6G5c+dq7ty5mjNnjuLiQr4YDQAA4ITSqfsMTZw4kSAEAAC6hJATze23366XX345ErUAAABYLuTDZAsXLtQVV1yht956S2eeeaYcDkfA+kWLFoWtOAAAgEgLOQw9+OCDWrdunQYOHChJrU6gBgAAiCUhh6FFixbpmWee0eTJkyNQDgAAgLVCPmfI6XTqggsuiEQtAAAAlgs5DM2cOVO///3vI1ELAACA5UI+TPbBBx/o7bff1uuvv67Bgwe3OoH6lVdeCVtxAAAAkRbyzFBGRoauvfZajR49WpmZmerevXvAI9KefPJJ9e/fX0lJSRo+fLj+/ve/t7v9pk2bNHz4cCUlJWnAgAFatmxZxGsEAACxo1M/xxEtq1at0qxZs/Tkk0/qggsu0FNPPaXx48frs88+U9++fVttv3v3bk2YMEF33HGHVqxYoffee0/Tpk1T7969dd1110XhEwAAgBNNTN1GetGiRbr99tv1ox/9SKeffroWL16svLw8LV26NOj2y5YtU9++fbV48WKdfvrp+tGPfqQpU6bot7/9rcWVAwCAE1WnfrU+Gurq6rR9+3bdc889Ae3jxo3Tli1bgu7z/vvva9y4cQFtl156qZ5++mm53e5W5ztJksvlksvl8i9XVFRIktxut9xu9/F+jACN/YW7XwRinK3BOFuDcbYG42yNSI5zKH3GTBg6cOCAPB6PsrOzA9qzs7O1b9++oPvs27cv6Pb19fU6cOCAcnNzW+2zcOFCzZ8/v1X7+vXrlZKSchyfoG1FRUUR6ReBGGdrMM7WYJytwThbIxLjXFNT0+FtYyYMNWp5l2vTNNu983Ww7YO1N5ozZ45mz57tX66oqFBeXp7GjRun9PT0zpYdlNvtVlFRkQoKCoLOUiE8GGdrMM7WYJytwThbI5Lj3HhkpyNiJgxlZmYqPj6+1SxQWVlZq9mfRjk5OUG3T0hIUK9evYLu43Q65XQ6W7U7HI6I/YGIZN9owjhbg3G2BuNsDcbZGpEY51D6C/kE6hkzZujxxx9v1b5kyRLNmjUr1O46LDExUcOHD281lVZUVKRRo0YF3WfkyJGttl+/fr1GjBjB/9wAAEBSJ8LQ6tWrg/4cx6hRo/TnP/85LEW1Zfbs2frjH/+oZ555Rjt37tSdd96pkpISTZ06VZLvENett97q337q1Kn66quvNHv2bO3cuVPPPPOMnn76ad11110RrRMAAMSOkA+THTx4MOjNFdPT03XgwIGwFNWWG2+8UQcPHtQDDzyg0tJSDRkyRG+++aby8/MlSaWlpSopKfFv379/f7355pu688479cQTT6hPnz56/PHHuccQAADwCzkMnXLKKXrrrbc0ffr0gPa//vWvGjBgQNgKa8u0adM0bdq0oOsKCwtbtY0ePVofffRRhKsCAACxKuQwNHv2bE2fPl379+/Xd77zHUnShg0b9Lvf/U6LFy8Od30AAAARFXIYmjJlilwulxYsWKBf/epXkqR+/fpp6dKlAefrAAAAxIJOXVr/k5/8RD/5yU+0f/9+JScnKzU1Ndx1AQAAWOK47jPUu3fvcNUBAAAQFR0KQ8OGDdOGDRvUo0cPDR06tN07PnOyMgAAiCUdCkNXXXWV/67MV111VbthCAAAIJZ0KAzdf//9/tfz5s2LVC0AAACWC/kO1AMGDNDBgwdbtR85csSS+wwBAACEU8hh6Msvv5TH42nV7nK59M0334SlKAAAAKt0+GqytWvX+l+vW7cu4Cc5PB6PNmzYoP79+4e3OgAAgAjrcBi6+uqrJUmGYei2224LWOdwONSvXz/97ne/C2txAAAAkdbhMOT1eiX5fvx027ZtyszMjFhRAAAAVgn5pou7d+/2v66trVVSUlJYCwIAALBSyCdQe71e/epXv9JJJ52k1NRUffHFF5Kk++67T08//XTYCwQAAIikkMPQr3/9axUWFuqRRx5RYmKiv/3MM8/UH//4x7AWBwAAEGkhh6Hnn39ey5cv10033aT4+Hh/+1lnnaV//vOfYS0OAAAg0kIOQ3v27NEpp5zSqt3r9crtdoelKAAAAKuEHIYGDx6sv//9763aX375ZQ0dOjQsRQEAAFgl5KvJ7r//ft1yyy3as2ePvF6vXnnlFe3atUvPP/+8Xn/99UjUCAAAEDEhzwxdeeWVWrVqld58800ZhqG5c+dq586deu2111RQUBCJGgEAACIm5JkhSbr00kt16aWXhrsWAAAAy3UqDElSXV2dysrK/HembtS3b9/jLgoAAMAqIYehzz//XFOmTNGWLVsC2k3TlGEYQX/RHgAA4EQVchiaPHmyEhIS9Prrrys3N1eGYUSiLgAAAEuEHIaKi4u1fft2DRo0KBL1AAAAWCrkq8nOOOMMHThwIBK1AAAAWC7kMPTwww/r7rvv1saNG3Xw4EFVVFQEPAAAAGJJyIfJvvvd70qSLrnkkoB2TqAGAACxKOQw9M4770SiDgAAgKgIOQyNHj06EnUAAABERchh6JNPPgnabhiGkpKS1LdvXzmdzuMuDAAAwAohh6Fzzjmn3XsLORwO3XjjjXrqqaeUlJR0XMUBAABEWshXk61Zs0annnqqli9fruLiYn388cdavny5Bg4cqJUrV+rpp5/W22+/rXvvvTcS9QIAAIRVyDNDCxYs0GOPPRbwQ61nnXWWTj75ZN1333364IMP1K1bN/3sZz/Tb3/727AWCwAAEG4hzwzt2LFD+fn5rdrz8/O1Y8cOSb5DaaWlpcdfHQAAQISFHIYGDRqkhx56SHV1df42t9uthx56yP8THXv27FF2dnb4qgQAAIiQkA+TPfHEE/re976nk08+WWeddZYMw9Ann3wij8ej119/XZL0xRdfaNq0aWEvFgAAINxCDkOjRo3Sl19+qRUrVuhf//qXTNPU97//fU2aNElpaWmSpFtuuSXshQIAAERCyGFIklJTUzV16tRw1wIAAGC5ToUhSfrss89UUlIScO6QJH3ve9877qIAAACsEnIY+uKLL3TNNddox44dMgxDpmlKkv9GjPxQKwAAiCUhX002c+ZM9e/fX99++61SUlL06aefavPmzRoxYoQ2btwYgRIBAAAiJ+SZoffff19vv/22evfurbi4OMXFxenCCy/UwoULNWPGDH388ceRqBMAACAiQp4Z8ng8Sk1NlSRlZmZq7969knw3Xdy1a1d4q2vm8OHDuuWWW9S9e3d1795dt9xyi44cOdLuPpMnT5ZhGAGP888/P2I1AgCA2BPyzNCQIUP0ySefaMCAATrvvPP0yCOPKDExUcuXL9eAAQMiUaMkadKkSfrmm2/01ltvSZL+8z//U7fccotee+21dve77LLL9Oyzz/qXExMTI1YjAACIPSGHoXvvvVfV1dWSpF//+te64oordNFFF6lXr15atWpV2AuUpJ07d+qtt97S1q1bdd5550mS/vCHP2jkyJHatWuXBg4c2Oa+TqdTOTk5HX4vl8sll8vlX66oqJDku8u22+3u5CcIrrG/cPeLQIyzNRhnazDO1mCcrRHJcQ6lT8NsvBzsOBw6dEg9evTwX1EWbs8884xmz57d6rBYRkaGHn30Uf3whz8Mut/kyZP16quvKjExURkZGRo9erQWLFigrKysNt9r3rx5mj9/fqv2lStXKiUl5bg+BwAAsEZNTY0mTZqk8vJypaent7ttp+8z1FzPnj3D0U2b9u3bFzTAZGVlad++fW3uN378eF1//fXKz8/X7t27dd999+k73/mOtm/fLqfTGXSfOXPmaPbs2f7liooK5eXlady4cccczFC53W4VFRWpoKBADocjrH2jCeNsDcbZGoyzNRhna0RynBuP7HREh8PQlClTOrTdM8880+E3b2sWprlt27ZJUtBZJ9M0252NuvHGG/2vhwwZohEjRig/P19vvPGGrr322qD7OJ3OoEHJ4XBE7A9EJPtGE8bZGoyzNRhnazDO1ojEOIfSX4fDUGFhofLz8zV06FCF4ciaJGn69OmaOHFiu9v069dPn3zyib799ttW6/bv36/s7OwOv19ubq7y8/P1+eefh1wrAADomjochqZOnaqXXnpJX3zxhaZMmaKbb775uA+PZWZmKjMz85jbjRw5UuXl5frggw907rnnSpL+93//V+Xl5Ro1alSH3+/gwYP6+uuvlZub2+maAQBA19Lh+ww9+eSTKi0t1c9//nO99tprysvL0w033KB169aFbaaoLaeffrouu+wy3XHHHdq6dau2bt2qO+64Q1dccUXAlWSDBg3SmjVrJElVVVW666679P777+vLL7/Uxo0bdeWVVyozM1PXXHNNROsFAACxI6SbLjqdTv3gBz9QUVGRPvvsMw0ePFjTpk1Tfn6+qqqqIlWjJOlPf/qTzjzzTI0bN07jxo3TWWedpRdeeCFgm127dqm8vFySFB8frx07duiqq67Saaedpttuu02nnXaa3n//faWlpUW0VgAAEDs6fTVZ4x2dTdOU1+sNZ01B9ezZUytWrGh3m+YzVMnJyVq3bl2kywIAADEupJkhl8ulF198UQUFBRo4cKB27NihJUuWqKSkxP8THQAAALGkwzND06ZN00svvaS+ffvqhz/8oV566SX16tUrkrUBAABEXIfD0LJly9S3b1/1799fmzZt0qZNm4Ju98orr4StOAAAgEjrcBi69dZbI/ZzGwAAANES0k0XAQAAupqQTqAGAADoaghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1ghDAADA1mImDC1YsECjRo1SSkqKMjIyOrSPaZqaN2+e+vTpo+TkZI0ZM0affvppZAsFAAAxJWbCUF1dna6//nr95Cc/6fA+jzzyiBYtWqQlS5Zo27ZtysnJUUFBgSorKyNYKQAAiCUxE4bmz5+vO++8U2eeeWaHtjdNU4sXL9Yvf/lLXXvttRoyZIiee+451dTUaOXKlRGuFgAAxIqEaBcQKbt379a+ffs0btw4f5vT6dTo0aO1ZcsW/fjHPw66n8vlksvl8i9XVFRIktxut9xud1hrbOwv3P0iEONsDcbZGoyzNRhna0RynEPps8uGoX379kmSsrOzA9qzs7P11VdftbnfwoULNX/+/Fbt69evV0pKSniLbFBUVBSRfhGIcbYG42wNxtkajLM1IjHONTU1Hd42qmFo3rx5QYNHc9u2bdOIESM6/R6GYQQsm6bZqq25OXPmaPbs2f7liooK5eXlady4cUpPT+90HcG43W4VFRWpoKBADocjrH2jCeNsDcbZGoyzNRhna0RynBuP7HREVMPQ9OnTNXHixHa36devX6f6zsnJkeSbIcrNzfW3l5WVtZotas7pdMrpdLZqdzgcEfsDEcm+0YRxtgbjbA3G2RqMszUiMc6h9BfVMJSZmanMzMyI9N2/f3/l5OSoqKhIQ4cOleS7Im3Tpk16+OGHI/KeAAAg9sTM1WQlJSUqLi5WSUmJPB6PiouLVVxcrKqqKv82gwYN0po1ayT5Do/NmjVLDz74oNasWaP/+7//0+TJk5WSkqJJkyZF62MAAIATTMycQD137lw999xz/uXG2Z533nlHY8aMkSTt2rVL5eXl/m3uvvtuHT16VNOmTdPhw4d13nnnaf369UpLS7O0dgAAcOKKmTBUWFiowsLCdrcxTTNg2TAMzZs3T/PmzYtcYQAAIKbFzGEyAACASCAMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAWyMMAQAAW0uIdgEAAMQs0/Q9dLzPClw2vZ3ro5ERJxlGw3OcJKONthbtarY+6LZGhAc0OghDABALvB6pvlaqrZbTXS5Vlkrxcb4vTa8n8Nn0NLxubA/W1s4+Xm8b/XRmH2/T64B9vQ1f+s2XW25jNvXZahtv6zazRd/eIPuZnmb9tqynqaYE06sr6t2K+yRO7YYQ2zFCC06twlhg8EowDF1Sc1RxPb+QLrozap+KMAQAwTSGj3qX5Klr8eyS6usanl3trGt8rg3S1rLfY2xjeiRJDkmXSdL/RXNwuj5DUrwkeaJYgWF04lnNAps3MPip+evOaj5zdfwMSamSPEfLw9JfZxGGAHRd7qNSVVnD41upal+z1w3PteXtho8TlWnEyTDiff/CjouXjHgpLs73HNAW3/Av8fimNv/6uCBtjf3EBe7ToX5a7tOsn5bbNJ818Le38Qh5vdH0nkG3OfZ6t8fUOxs3auzY78jhcKhV6Gg+A9I8iHQqwLTs24JDUWbLw3HedsJTJ7dt1d66rb7erS3vvaeRw671hc8oIQwBiC1er1RzsCHQNH80CzmVDaHHFa5/bRpSglOKd0oJiU3PCUlSfGLDusTg28Q7fe3trWvc17+Ns81+3Wa83nxrvSZcfnnDlzQiwu3W0cRMqfvJUlccZ3/oiu51VKbbrcOpZVL3vKjWETNhaMGCBXrjjTdUXFysxMREHTly5Jj7TJ48Wc8991xA23nnnaetW7dGqEoAneaqahZqms/gtAg41ftDm7WJd0qp2VJqlu85LTtwOSkjePhoHnTiEqz513pHuN0nTi1AFxEzYaiurk7XX3+9Ro4cqaeffrrD+1122WV69tln/cuJiYmRKA9AMJ56X3hpaxanstmyuzq0vlMym0JNWk5TuGkedFKzpaTuhAcA7YqZMDR//nxJUmFhYUj7OZ1O5eTkRKAiwIa8HunoYd9hqppDDc8HpaOHFFe1X0O/Klb8ymeaAlDNQYV0xY0jJTDQBA05OVK3TCm+Cx66ABAVMROGOmvjxo3KyspSRkaGRo8erQULFigrK6vN7V0ul1wul3+5oqJCkuR2u+V2u8NaW2N/4e4XgRjnNnjrfcHm6GEZjeHm6CEZR30hx2gMPUcPyzjasL62XEYb4SZeUl9JOhTYbhpxUrfeUrcsmQ2hxuyWJaVmyUzNataeJSWmdrB2SV57/vfk/2drMM7WiOQ4h9KnYZot79R0YissLNSsWbM6dM7QqlWrlJqaqvz8fO3evVv33Xef6uvrtX37djmdzqD7zJs3zz8L1dzKlSuVkpJyvOX75RzZrvyDG+VK6C6Xo7tcCd1V60iXKyFDLkd31Sakqz4+hel9dIhheuSor5azvlKJnkol1lcpsb7h2dP4uvlylRI9IR6WaqYuPkV18amqS0hTXUKq7xGfprqENNU6MlTr6C5XQoZqHRmqS0htuPIGAKxTU1OjSZMmqby8XOnp6e1uG9Uw1FbwaG7btm0aMWKEfzmUMNRSaWmp8vPz9dJLL+naa68Nuk2wmaG8vDwdOHDgmIMZiri//1bxmx9qdxsz3un717P/X9VZDf/Czva/bvyXtRK7ha22rsbtdquoqEgFBQWxcfWNafpmbKrLGmZpms3UHD0oo2EGRzUNszhHD8mo7fxVU2ZShpTcQ2ZKLym5h5TSS2ZyTym5p8yUnlJyLymlh8zkXlJKT982ca0nlWNunGMU42wNxtkakRzniooKZWZmdigMRfUw2fTp0zVx4sR2t+nXr1/Y3i83N1f5+fn6/PPP29zG6XQGnTVyOBzh/Q81+HuqT8vRvz56VwNP6qH4mv3NTjQtk1wVMjwuqfxrGeVfH7s/R7dm51b0bjrHoluz16m+UCVHUvg+RwwJ+3/D41FfJ5V/LR3eLR3+ssXjK8lV0bl+kzKklF4Nj55Nz8k9W7T18rUl95AR7/trIFxzkCfUOHdhjLM1GGdrRGKcQ+kvqmEoMzNTmZmZlr3fwYMH9fXXXys3N9ey92xT9mCZPU/T53t76tRLJyi+5X+05jeLq25+k7iG182Dk7vGdyXO4d2+x7EkdfeFIv8JqVlNQapb89ecpNpppuk738YfcHY3BZ3DX0rl3+iYJxY3zNI0BRnfDE1AmGkecJIypPgufxogAIRdzPzNWVJSokOHDqmkpEQej0fFxcWSpFNOOUWpqb6TLgcNGqSFCxfqmmuuUVVVlebNm6frrrtOubm5+vLLL/WLX/xCmZmZuuaaa6L4STrIkSz1yPc9jqX5/Vmqm99tN0h48tT57rhbWy4dbHuGzC+lV2BASs0KPtuQ3NP3bKfw5K5tmN35Mvijrqr9/R0pUo9+wR8ZfX3/DwAAIi5mwtDcuXMDbqA4dOhQSdI777yjMWPGSJJ27dql8nLfuRPx8fHasWOHnn/+eR05ckS5ubkaO3asVq1apbS0NMvrjyhnqu/R6/9rfzvT9IUgf0BqHpya3Qumer+v3fQ0XTq9f2cHa0lvmtFodXimWWjyz2z0PHG/9E3TNxZthZ2KvWp/dseQ0vu0HXi69eYEeQA4AcRMGCosLDzmPYaanwuenJysdevWRbiqGGMYUnKG79H7tPa39Xp9J+k2n2VqPFxXc8h/Gbb/fjNHD0syfee6uCqkI191vC5HSkMw6hEYkgJetwhSianhCRLuo9KRkrYDj7um/f0TU9sOO93zbHt+FgDEkpgJQ7BYXJzvnKFumVL2Gcfe3uvxzTo13oiv2VVQga8PB7Z76xvOeaqRKr4JoT5Hi8DUTpBypKpn1b9k7KiSKloc1qosPcYbGb7fJurRr+GwZT+pR/+mwJPSi9kdAIhxhCGER1x80wyOTunYPqYpuSpbBKaWM06Nrw83va6v9d1wr/Gw3jE4JF0kSW2dIpWYJvXsF2R2p79vdieBn3ABgK6MMIToMQwpKd33UP+O71dXc+wZp2avzaOHVWM6ldzndMX17N868CT3YHYHAGyMMITYk5jie2TkdWjzerdbf3vzTU2YMEFx3C8EANAC98gHAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2RhgCAAC2lhDtAk50pmlKkioqKsLet9vtVk1NjSoqKuRwOMLeP3wYZ2swztZgnK3BOFsjkuPc+L3d+D3eHsLQMVRWVkqS8vLyolwJAAAIVWVlpbp3797uNobZkchkY16vV3v37lVaWpoMwwhr3xUVFcrLy9PXX3+t9PT0sPaNJoyzNRhnazDO1mCcrRHJcTZNU5WVlerTp4/i4to/K4iZoWOIi4vTySefHNH3SE9P5w+bBRhnazDO1mCcrcE4WyNS43ysGaFGnEANAABsjTAEAABsjTAURU6nU/fff7+cTme0S+nSGGdrMM7WYJytwThb40QZZ06gBgAAtsbMEAAAsDXCEAAAsDXCEAAAsDXCEAAAsDXCUJQ8+eST6t+/v5KSkjR8+HD9/e9/j3ZJXcrChQv1H//xH0pLS1NWVpauvvpq7dq1K9pldXkLFy6UYRiaNWtWtEvpkvbs2aObb75ZvXr1UkpKis455xxt37492mV1KfX19br33nvVv39/JScna8CAAXrggQfk9XqjXVpM27x5s6688kr16dNHhmHo1VdfDVhvmqbmzZunPn36KDk5WWPGjNGnn35qWX2EoShYtWqVZs2apV/+8pf6+OOPddFFF2n8+PEqKSmJdmldxqZNm/TTn/5UW7duVVFRkerr6zVu3DhVV1dHu7Qua9u2bVq+fLnOOuusaJfSJR0+fFgXXHCBHA6H/vrXv+qzzz7T7373O2VkZES7tC7l4Ycf1rJly7RkyRLt3LlTjzzyiH7zm9/o97//fbRLi2nV1dU6++yztWTJkqDrH3nkES1atEhLlizRtm3blJOTo4KCAv/vg0acCcude+655tSpUwPaBg0aZN5zzz1RqqjrKysrMyWZmzZtinYpXVJlZaV56qmnmkVFRebo0aPNmTNnRrukLufnP/+5eeGFF0a7jC7v8ssvN6dMmRLQdu2115o333xzlCrqeiSZa9as8S97vV4zJyfHfOihh/xttbW1Zvfu3c1ly5ZZUhMzQxarq6vT9u3bNW7cuID2cePGacuWLVGqqusrLy+XJPXs2TPKlXRNP/3pT3X55Zfru9/9brRL6bLWrl2rESNG6Prrr1dWVpaGDh2qP/zhD9Euq8u58MILtWHDBv3rX/+SJP3jH//Qu+++qwkTJkS5sq5r9+7d2rdvX8D3otPp1OjRoy37XuSHWi124MABeTweZWdnB7RnZ2dr3759UaqqazNNU7Nnz9aFF16oIUOGRLucLuell17SRx99pG3btkW7lC7tiy++0NKlSzV79mz94he/0AcffKAZM2bI6XTq1ltvjXZ5XcbPf/5zlZeXa9CgQYqPj5fH49GCBQv0gx/8INqldVmN333Bvhe/+uorS2ogDEWJYRgBy6ZptmpDeEyfPl2ffPKJ3n333WiX0uV8/fXXmjlzptavX6+kpKRol9Oleb1ejRgxQg8++KAkaejQofr000+1dOlSwlAYrVq1SitWrNDKlSs1ePBgFRcXa9asWerTp49uu+22aJfXpUXze5EwZLHMzEzFx8e3mgUqKytrlYpx/P7rv/5La9eu1ebNm3XyySdHu5wuZ/v27SorK9Pw4cP9bR6PR5s3b9aSJUvkcrkUHx8fxQq7jtzcXJ1xxhkBbaeffrpWr14dpYq6pv/+7//WPffco4kTJ0qSzjzzTH311VdauHAhYShCcnJyJPlmiHJzc/3tVn4vcs6QxRITEzV8+HAVFRUFtBcVFWnUqFFRqqrrMU1T06dP1yuvvKK3335b/fv3j3ZJXdIll1yiHTt2qLi42P8YMWKEbrrpJhUXFxOEwuiCCy5odXuIf/3rX8rPz49SRV1TTU2N4uICvxrj4+O5tD6C+vfvr5ycnIDvxbq6Om3atMmy70VmhqJg9uzZuuWWWzRixAiNHDlSy5cvV0lJiaZOnRrt0rqMn/70p1q5cqX+8pe/KC0tzT8T1717dyUnJ0e5uq4jLS2t1XlY3bp1U69evTg/K8zuvPNOjRo1Sg8++KBuuOEGffDBB1q+fLmWL18e7dK6lCuvvFILFixQ3759NXjwYH388cdatGiRpkyZEu3SYlpVVZX+/e9/+5d3796t4uJi9ezZU3379tWsWbP04IMP6tRTT9Wpp56qBx98UCkpKZo0aZI1BVpyzRpaeeKJJ8z8/HwzMTHRHDZsGJd8h5mkoI9nn3022qV1eVxaHzmvvfaaOWTIENPpdJqDBg0yly9fHu2SupyKigpz5syZZt++fc2kpCRzwIAB5i9/+UvT5XJFu7SY9s477wT9O/m2224zTdN3ef39999v5uTkmE6n07z44ovNHTt2WFafYZqmaU3sAgAAOPFwzhAAALA1whAAALA1whAAALA1whAAALA1whAAALA1whAAALA1whAAALA1whAAALA1whAAALA1whCAmFVWVqYf//jH6tu3r5xOp3JycnTppZfq/ffflyQZhqFXX301ukUCOOHxQ60AYtZ1110nt9ut5557TgMGDNC3336rDRs26NChQ9EuDUAMYWYIQEw6cuSI3n33XT388MMaO3as8vPzde6552rOnDm6/PLL1a9fP0nSNddcI8Mw/MuS9Nprr2n48OFKSkrSgAEDNH/+fNXX1/vXG4ahpUuXavz48UpOTlb//v318ssv+9fX1dVp+vTpys3NVVJSkvr166eFCxda9dEBhBlhCEBMSk1NVWpqql599VW5XK5W67dt2yZJevbZZ1VaWupfXrdunW6++WbNmDFDn332mZ566ikVFhZqwYIFAfvfd999uu666/SPf/xDN998s37wgx9o586dkqTHH39ca9eu1f/8z/9o165dWrFiRUDYAhBb+NV6ADFr9erVuuOOO3T06FENGzZMo0eP1sSJE3XWWWdJ8s3wrFmzRldffbV/n4svvljjx4/XnDlz/G0rVqzQ3Xffrb179/r3mzp1qpYuXerf5vzzz9ewYcP05JNPasaMGfr000/1t7/9TYZhWPNhAUQMM0MAYtZ1112nvXv3au3atbr00ku1ceNGDRs2TIWFhW3us337dj3wwAP+maXU1FTdcccdKi0tVU1NjX+7kSNHBuw3cuRI/8zQ5MmTVVxcrIEDB2rGjBlav359RD4fAGsQhgDEtKSkJBUUFGju3LnasmWLJk+erPvvv7/N7b1er+bPn6/i4mL/Y8eOHfr888+VlJTU7ns1zgINGzZMu3fv1q9+9SsdPXpUN9xwg77//e+H9XMBsA5hCECXcsYZZ6i6ulqS5HA45PF4AtYPGzZMu3bt0imnnNLqERfX9Ffi1q1bA/bbunWrBg0a5F9OT0/XjTfeqD/84Q9atWqVVq9ezVVsQIzi0noAMengwYO6/vrrNWXKFJ111llKS0vThx9+qEceeURXXXWVJKlfv37asGGDLrjgAjmdTvXo0UNz587VFVdcoby8PF1//fWKi4vTJ598oh07dujXv/61v/+XX35ZI0aM0IUXXqg//elP+uCDD/T0009Lkh599FHl5ubqnHPOUVxcnF5++WXl5OQoIyMjGkMB4HiZABCDamtrzXvuucccNmyY2b17dzMlJcUcOHCgee+995o1NTWmaZrm2rVrzVNOOcVMSEgw8/Pz/fu+9dZb5qhRo8zk5GQzPT3dPPfcc83ly5f710syn3jiCbOgoMB0Op1mfn6++eKLL/rXL1++3DznnHPMbt26menp6eYll1xifvTRR5Z9dgDhxdVkANBCsKvQAHRdnDMEAABsjTAEAABsjROoAaAFzh4A7IWZIQAAYGuEIQAAYGuEIQAAYGuEIQAAYGuEIQAAYGuEIQAAYGuEIQAAYGuEIQAAYGv/D61/zSxNk5HiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Make sure that the magnetic moments were stable\n", + "\n", + "plt.xlabel(\"Steps\")\n", + "plt.ylabel(\"Magnetic moment\")\n", + "plt.grid()\n", + "plt.plot(spx_af.output.generic.dft.atom_scf_spins[0]);" + ] + }, + { + "cell_type": "markdown", + "id": "f418b225-1c08-4a41-9507-26fcb172fac7", + "metadata": {}, + "source": [ + "### Last case: Non-magnetic\n", + "\n", + "Let's take also a non-magnetic one into account" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "76b937b3-4688-4f08-a7b2-c0f03ee11630", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-14 06:46:55,008 - pyiron_log - WARNING - The job nonmag is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n" + ] + } + ], + "source": [ + "spx_n = pr.create.job.Sphinx(\"nonmag\")\n", + "spx_n.structure = bulk.copy()\n", + "spx_n.set_encut(500)\n", + "spx_n.set_kpoints(k_mesh_spacing=0.15)\n", + "spx_n.run()" + ] + }, + { + "cell_type": "markdown", + "id": "ca50aded", + "metadata": {}, + "source": [ + "## Evaluation of results\n", + "\n", + "In the following, we are going to obtain the $J_{ij}$ parameters by fitting the DFT results to our model. First, let's come back to the Heisenberg model:\n", + "\n", + "$$\\mathcal H = -\\frac{1}{2}\\sum_{ij} J_{ij}m_im_j$$\n", + "\n", + "This equation can be rewritten as:\n", + "\n", + "$$\\mathcal H = -\\frac{1}{2}\\sum_s J_s\\sum_{ij} D_{s,ij}m_im_j$$\n", + "\n", + "where $J_s$ is the Heisenberg parameter for the shell $s$ and the shell matrix $D_{s,ij}$ is defined as:\n", + "\n", + "\\begin{align}\n", + "D_{s,ij} =\n", + "\\begin{cases}\n", + "1 & \\text{if $i$ and $j$ are neighbors of shell $s$}\\\\\n", + "0 & \\text{else}\n", + "\\end{cases}\n", + "\\end{align}\n", + "\n", + "$D_{s,ij}$ can be obtained from `get_shell_matrix` in the `Neighbors` class in pyiron. It returns all the shell matrices in a list." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "05151e81", + "metadata": {}, + "outputs": [], + "source": [ + "class EvaluateJob:\n", + " def __init__(self, job, n_shells=1):\n", + " self.ref_job = job\n", + " self.n_shells = n_shells\n", + "\n", + " @property\n", + " def _neighbors(self):\n", + " return self.ref_job.structure.get_neighbors(\n", + " num_neighbors=100\n", + " )\n", + " \n", + " @property\n", + " def _shell_matrices(self):\n", + " return self._neighbors.get_shell_matrix()[:self.n_shells]\n", + "\n", + " @property\n", + " def _magmoms(self):\n", + " if \"atom_spins\" in job[\"output/generic/dft\"]:\n", + " return self.ref_job.output.generic.dft.atom_spins[-1]\n", + " else:\n", + " return np.array(len(self.ref_job.structure) * [0])\n", + " \n", + " @property\n", + " def values(self):\n", + " m = self._magmoms\n", + " # len(m) is required to intercept the per-atom energy\n", + " J = [-mat.dot(m).dot(m) / 2 for mat in self._shell_matrices]\n", + " A = [np.sum(m**ii) for ii in [2, 4, 6]]\n", + " return np.array(J + A)\n", + "\n", + " @property\n", + " def derivatives(self):\n", + " m = self._magmoms\n", + " dJ = [-ss.dot(m) for ss in self._shell_matrices]\n", + " dA = [ii * m**(ii - 1) for ii in [2, 4, 6]]\n", + " return np.array(dJ + dA).T" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "86177998", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "69dc892a5c594225a2cd583002a7cb0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2 [00:00, but object is locked!\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "job_nonmag = pr.load(\"nonmag\")\n", + "\n", + "E_nonmag = job_nonmag[\"output/generic/energy_pot\"][-1] / len(job_nonmag.structure)\n", + "\n", + "x_lst, y_lst = [], []\n", + "for job in pr.iter_jobs(job=\"^(?!nonmag$)\", mode=\"regex\"):\n", + " ej = EvaluateJob(job)\n", + " x_lst.append(ej.values / len(job.structure))\n", + " y_lst.append(job[\"output/generic/energy_pot\"][-1] / len(job.structure) - E_nonmag)\n", + " x_lst.append(ej.derivatives[0])\n", + " y_lst.append(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7280b36a", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "53914f3e", + "metadata": {}, + "outputs": [], + "source": [ + "reg = LinearRegression(fit_intercept=False).fit(x_lst, y_lst)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "800811f8-d192-4d5d-b921-768f679c336a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4w0lEQVR4nO3deXxTVfo/8M9NmqZ7um+0UPatZd8KboiUVUAHkB9adxzHbRRnxkFHRefrOOM+6ozb4AojjgqKioWCyCIUCqUspZS1dN/bdG/T5P7+yAK1W9omvbnJ5/168dKG5PbJIU2fnPOc5wiiKIogIiIionYppA6AiIiIyJExWSIiIiLqBJMlIiIiok4wWSIiIiLqBJMlIiIiok4wWSIiIiLqBJMlIiIiok64SR2AMzAYDCgoKICvry8EQZA6HCIiIrKCKIqoqalBZGQkFIqO54+YLNlAQUEBoqOjpQ6DiIiIeiA3NxdRUVEd/j2TJRvw9fUFYBxsPz8/m11Xp9Nh+/btSEhIgEqlstl1nRXHy3ocK+txrKzHsbIex8p69hyr6upqREdHW36Pd4TJkg2Yl978/Pxsnix5eXnBz8+PP0xW4HhZj2NlPY6V9ThW1uNYWa8vxqqrEhoWeBMRERF1gskSERERUSeYLBERERF1gskSERERUSeYLBERERF1gskSERERUSeYLBERERF1gskSERERUSeYLBERERF1gskSERERUSeYLBERERF1gskSERERUSeYLDmwhmY9yhqBirpmqUMhIiKSRKG2EZVNQHOLQbIYmCw5sKe3nMJfj7rh66P5UodCREQkiX8kncHaNDdsOJQrWQxMlhxYsI87AKC8ljNLRETkmsrrmgBc/p0oBSZLDizQm8kSERG5tjLT78AgbyZL1A5zFl3GmiUiInJR5abfgZxZonYF+6gBcGaJiIhcU4vegKoGHQDOLFEHzC+Mcs4sERGRC6qob4YoAgJE+HsxWaJ2BPlcTpYMBlHiaIiIiPpWWY1xssBbBSgVgmRxMFlyYIGmLFpvEKE1TUMSERG5CvNOOF+VtHEwWXJg7m4KeCmNM0pltU0SR0NERNS3zL/7fFXSrq4wWXJwvqYl2jIWeRMRkYsxb3DizBJ1ysfN+F/OLBERkaspNf3u82GyRJ3xdecyHBERuabLM0tchqNOmKce2WuJiIhczeWaJWnjYLLk4MzZNGeWiIjI1bBmiaxifoEwWSIiIldTZqlZ4jIcdcLHkixxGY6IiFyHKIqcWSLrcBmOiIhcUXVjC5r1BgBMlqgLVy7DiSKPPCEiItdQbl6CU7tBJXG2wmTJwZmTpUadAfXNemmDISIi6iPm8hPzofJSYrLk4NRKwNOUUnMpjoiIXIV5ZinYh8kSWSHIRw2ARd5EROQ6zBMEgZxZ6r5///vfGDhwIDw8PDBx4kTs3bu30/vv3r0bEydOhIeHBwYNGoR33323zX2+/vprjBo1Cmq1GqNGjcLmzZvtFX6PmKcgObNERESuwjxBwJmlbvriiy/w6KOP4qmnnsLRo0dx9dVXY968ecjJyWn3/hcvXsT8+fNx9dVX4+jRo3jyySfxyCOP4Ouvv7bc58CBA7jllluQmJiIY8eOITExEcuXL8fBgwf76ml1yfxCYbJERESuwvw7zxFqltykDqA7XnvtNdxzzz249957AQBvvPEGtm3bhnfeeQcvvvhim/u/++676N+/P9544w0AwMiRI3H48GG88sor+M1vfmO5xuzZs7FmzRoAwJo1a7B792688cYb+Pzzz/vmiXXB/ELhkSdE9tfcYsDZkhrkVzaguLoRDc0tOFUgoOZwHvoFeqN/oBcGBnlDoRCkDpXIqZVfObMk8VyBbJKl5uZmHDlyBH/+859b3Z6QkID9+/e3+5gDBw4gISGh1W1z5szBunXroNPpoFKpcODAATz22GNt7mNOsNrT1NSEpqbL/3LV1dUAAJ1OB51O152n1SnztQI8jf9MJdUNNr2+szGPDceoaxyr1i6V1+OHE0XYe64MJ/Kr0dRi+NU9lPjm0inLV34ebhgf7Y+Zw4Mxd3SYpa7Q1fF1ZT2OVddKaxoBABoPJQD7jJW115RNslRWVga9Xo+wsLBWt4eFhaGoqKjdxxQVFbV7/5aWFpSVlSEiIqLD+3R0TQB48cUX8dxzz7W5ffv27fDy8rL2KVmtLO8CACVOnr2ErVsv2vz6ziY5OVnqEGTDlcdKLwLHygX8XKjApdrWs0SeShHBHoC/uwh34/s0GlqAqmYBpY3GZnm7z5Zh99kyPPd9JkYFiJgZIWKInwiBE04u/brqLo5Vx3JKlAAEXMw8hsF+9hmr+vp6q+4nm2TJTPjVO5Eoim1u6+r+v769u9dcs2YNVq9ebfm6uroa0dHRSEhIgJ+fX9dPwko6nQ7JycmYPjEOX2efgsovCPPnT7bZ9Z2Nebxmz54NlUridq8OzpXHShRFfH+iCK8ln0VelfGTq1IhIH5QIOaMCsOUmAAMDPayvAf8eqx0egOyimpx4GI5kk4W43h+NTIqBWRUAmP6+eGJucMwJSZQyqcoGVd+XXUXx6prT6X9BKAFc66dgXNHf7HLWJlXhroim2QpODgYSqWyzYxPSUlJm5khs/Dw8Hbv7+bmhqCgoE7v09E1AUCtVkOtbjvtrlKp7PKiD9MYZ6vK65r5Q2UFe/07OCNXG6uT+Vr85ZuTSM+tAmDckpw4bQBumzYAIb6dL6WZx0qlAsbHqDE+JggPzByG86W1+HDfRXx1JA/H86tx67rDmDs6HM8uGoUIjWcfPCvH42qvq97gWLWvUadHbVMLACDc3wvnYJ+xsvZ6stkN5+7ujokTJ7aZhktOTsb06dPbfUx8fHyb+2/fvh2TJk2yDFBH9+nomlJggTdR7zS3GPBa8hks/tcvSM+tgre7En9IGIZfnrgej80e1mWi1JnBIT544aY47Hvietw6tT8UApCUUYSE1/fgqyN5PKaIqAfK64y/79yVCvh6SD+vI30E3bB69WokJiZi0qRJiI+Px/vvv4+cnBzcf//9AIzLY/n5+fj0008BAPfffz/efvttrF69GqtWrcKBAwewbt26Vrvcfv/73+Oaa67BP/7xDyxevBjffvstduzYgX379knyHNsTZGodoG3QobnFAHc32eS4RJLLr2rAA+uP4FieFgCwIC4Czy4ahVBfD5t+nxBfNV64KQ53TI/Bn746jvTcKvzhy2PYdboE/1g6Bj5qWb3dEknK3L07yMe907KYviKrn95bbrkF5eXleP7551FYWIjY2Fhs3boVAwYMAAAUFha26rk0cOBAbN26FY899hj+9a9/ITIyEm+++aalbQAATJ8+HRs3bsRf/vIXPP300xg8eDC++OILTJ06tc+fX0c0Hiq4KQS0GESU1zW57NQ+UXftO1uGhz9PQ2W9DhpPFV64KRYLx0Ta9XsOC/PFV/fH4/29F/B68hn8cKIQWcU1eC9xIgaH+Nj1exM5i7IrkiVHIKtkCQAeeOABPPDAA+3+3ccff9zmtmuvvRZpaWmdXnPp0qVYunSpLcKzC4VCQKC3O0pqmlBe28xkicgK/zucizWbTkBvEBHbzw/v3DoR0YG2363aHjelAg9cNwRTBwbigQ1pOFdSi5v+9Qv+c8dkTBnomsXfRN1x+RBdx2jLwfUcmQg29XEpZRdvok6Jooh/7TqHP311HHqDiCXjIvHV/dP7LFG60sQBgfju4aswob8/qhtbcNu6g/jxRGGfx0EkN6U1xt91vakntCUmSzIRbHrBlNUwWSLqiCiK+NvWTLy8LQsA8NtrB+H1W8bBQ6WULKZQXw/8d9U0zB4VhuYWAx78bxq+Tc+XLB4iOWCyRD0SbN4RV8cdcUTtEUUR/0jKwgd7jY1b/7JgJNbMG+kQxaEeKiXevW0ibpkUDYMIPPZFOrYcK5A6LCKHZV5FCXWQZEl2NUuuijNLRJ37586zeHf3eQDAX5fEInHaAIkjak2pEPDizXEAgC8O5+KxL9LhphAwPy5C4siIHA9nlqhHgk07AspYs0TUxof7LuKNHWcBGGeUHC1RMlOYEqalE6OgN4h4dGM6Ui6USx0WkcMxTwyEOMi5i0yWZMKcXbPAm6i1bRlF+OsPxkNu/zhnOO69epDEEXVOoRDwj9+Mwfy4cDTrDbjv08M4W1wjdVhEDoUzS9QjIT7GBnqlXIYjsjieV4XfbzwKUQRundofD1w3WOqQrKJUCHht+ThMGhCA6sYW3PlRKoqrG6UOi8ghNDTrUWM66oTJEnWLZWaJyRIRAKBQ24B7PjmMRp0B1w4LwXOLRjtEMbe1PFRKfHD7JAwK8UZ+VQPuX38ETS16qcMikpz595yHSuEwne+ZLMmEeUdAZb3xyBMiV9bcYsCDG9JQWtOEEeG+eHvleLgp5fd2FuDtjo/unAw/DzcczanCc9+dkjokIsmV1hpnWUN81Q7zAUh+7y4uSuOpgkppfNGwyJtc3d+2ZiItpwq+Hm54L3EifD3ke2r7gCBv/PP/jYcgAP89mIMvUnO6fhCREyt1sOJugMmSbCgUwuUu3lyKIxf2bXo+Pt6fDQB445ZxGBDkLW1ANjBzeChW3zAMAPD0Nxk4ma+VOCIi6ThacTfAZElWzC+cEiZL5KIuldfhyU0nAAAPXz8Es0aGSRyR7Tw4cwhuGBmKZr0Bj2w8ivrmFqlDIpIEkyXqlVAWeZMLa9Eb8OgX6ahr1mPqwEA8apqJcRYKhYCXlo5FmJ8aF0rr8NfvWb9ErsncIse8C9wRMFmSEe6II1f29q5zOGqqU3rtlnFQKhyj8NOWAr3d8frycRAE4PNDudjKQ3fJBXFmiXrFXOxWUsN+LORa0nIq8dZP5wAA/7ckFv38PSWOyH6mDwnG/dca+0Wt2XSCP+/kcpgsUa+E+LExJbmehmY9HvsiHXqDiCXjIrF4XD+pQ7K71bOHIbafH7QNOjz9zUmIoih1SER9hskS9Yp5ZolHnpAreS05C5fK6xGp8cDzS2KlDqdPqJQKvPSbsXBTCNiWUYwfuBxHLkIUxcs1S0yWqCcsu+GqmSyRazieV4V1+y4CAF64OQ5+Mu6n1F2jIv3wwMwhAIBnvs1AOT8kkQvQNuig0xtnUs0HyDsCJksyEnrFYbqclidnp9Mb8KevjsMgAovHRWLm8FCpQ+pzD80cguFhvqioa8azWzKkDofI7sxLcP5eKqjdlBJHcxmTJRkxzyw1txhQ3cgeLOTc3t9zAaeLahDgpcIzC0dJHY4k3N0UeHnZGCgVAr4/XohdWSVSh0RkV47YvRtgsiQrHiolfD2MhwqyyJucWXZZHf658ywA4JkbRyHIwd44+9KYKH/cNT0GALB2SwYadTxsl5xXiQMWdwNMlmQn1JftA8j5Pf/9KTS3GHD10GAscYHdb115dPYwhPmpcam8Hu/vuSB1OER244g74QAmS7LDxpTk7H46XYyfTpdApRSwdtFohzl1XEo+ajc8tcC4FPmvXeeQW1EvcURE9nG5ezeTJeqFEF/2WiLn1dSix/PfGY/5uHvGQAwO8ZE4Isdx45gITB8chKYWA577jsXe5Jw4s0Q2wfPhyJn9Z+9FZJfXI9RXjYdnDZU6HIciCAKeXxwLlVLAjswS7DrNYm9yPkyWyCa4DEfOqlDbgLdNR5qsmT8CPmo3iSNyPENCfXDXjIEAgBe2ZqJFb5A4IiLbYrJENsEu3uSsXt1+Bg06PSYNCGBRdycenDkEAV4qnCupxcbUXKnDIbIpR+zeDTBZkp1QP3bxJueTWViNr9PyAAB/WTiKRd2d0Hiq8OgNwwAAryefQU2jTuKIiGxDpzegoq4ZAAu8qZdCfDmzRM7nH0mnIYrAgrgIjIv2lzoch7dyan8MCvFGeV0z/v3zeanDIbKJ8lpjoqRUCAjwcpyjTgAmS7JjzrYr6pqhY70COYH958rwc1Yp3BQC/jhnuNThyIJKqcCaeSMBAOv2XUReJVsJkPyZ65WCfdyhUDjW7DKTJZkJ8HKHm+lFVMbZJZI5g0HEiz+eBgDcOrU/YoK9JY5IPm4YGYr4QUFobjHgjR1npQ6HqNdKa43Nlh2tXglgsiQ7CoWAYB/uiCPn8P2JQpzI18JH7cZWAd0kCAKemDcCALApLQ/nSmoljoiodxz1XDiAyZIssX0AOQOd3oBXtmUBAH57zSDLhwCy3rhof9wwMgwGEXh9xxmpwyHqFUdtGwAwWZKlEMv5cEyWSL6+OpKHnIp6BPuocc/VA6UOR7YeTxgGQQB+OF6IUwXVUodD1GOOeoguwGRJltjFm+SuucVgaUD5u+sGw8udDSh7amSEHxaOiQQAvJacJXE0RD1XXG2sWQr385A4kraYLMkQl+FI7r48kov8qgaE+qpx69T+Uocje4/dMBRKhfEYlLScSqnDIeqRYlP/wFAmS2QLl5fhGiWOhKj7mlr0llmlB64bDA+VUuKI5G9QiA9+M8HY9fzV7ZxdInkqMc0shXIZjmwhlDVLJGP/S81FobYR4X4eWDGFs0q28sisoVApBfxyrhyp2RVSh0PULQaDaPmdFsaZJbKFEF/jC4lHnpDcNOr0+NcuY8fpB2ZyVsmWogK8sHRiNABYZu6I5KKivhktBhEAC7zJRsL8Li/DiaIocTRE1vsiNRdF1Y2I0HjglsnRUofjdH537WAoFQJ2nynF8bwqqcMhspq5uDvYxx0qpeOlJo4XEXUp1DSzpNOLqKznIZokD80tBry32zyrNARqN84q2Vr/IC8sHmfcGcfZJZIT80qJ+febo2GyJEPubgoEeRsPGTRn40SO7tv0fBRoGxHiq8ayiVFSh+O0HrhuCAQB2H6qGKeL2HeJ5MG8Ycm8cuJoZJMsVVZWIjExERqNBhqNBomJiaiqqur0MaIoYu3atYiMjISnpyeuu+46ZGRktLrPddddB0EQWv1ZsWKFHZ+JbZi3VjJZIjkwGES8a5pVuueqgaxVsqMhoT6YHxsBAJb6MCJHZ24b4IjF3YCMkqWVK1ciPT0dSUlJSEpKQnp6OhITEzt9zEsvvYTXXnsNb7/9NlJTUxEeHo7Zs2ejpqam1f1WrVqFwsJCy5/33nvPnk/FJix1SyzyJhnYfqoY50vr4Ofhxr5KfeDBmUMAAN8fL8D5Up4ZR47P/MHfEXssATJJljIzM5GUlIT//Oc/iI+PR3x8PD744AN8//33yMpqv6eIKIp444038NRTT+Hmm29GbGwsPvnkE9TX1+O///1vq/t6eXkhPDzc8kej0fTF0+qVMNO6bhFnlsjBiaKId3421s/cHh8DXw+VxBE5v1GRfrhhZChEEXj3Z84ukeO7PLPkmMtwsjhj4MCBA9BoNJg6darltmnTpkGj0WD//v0YPnx4m8dcvHgRRUVFSEhIsNymVqtx7bXXYv/+/fjtb39ruX3Dhg1Yv349wsLCMG/ePDz77LPw9fXtMJ6mpiY0NV2e0amuNtYF6HQ66HS2K7g2X6u9awb7GH/hFFbV2/R7ylln40Wt9eVY7T9fjmN5WqjdFLhtSj/Z/fvI9XV139Ux2JFZgm/S8/HorMF90uhPrmMlBY5Va8XVDQCAIC+3NmNiz7Gy9pqySJaKiooQGhra5vbQ0FAUFRV1+BgACAsLa3V7WFgYLl26ZPn61ltvxcCBAxEeHo6TJ09izZo1OHbsGJKTkzuM58UXX8Rzzz3X5vbt27fDy8vLqufUHe3FUlosAFDixLkcbN2abfPvKWed/dtRa30xVv86pQCgwJTgFhzcs9Pu389e5Pi6GuirxMUa4Nn1u3DjAEOffV85jpVUOFZGOSVKAALOHT+Mpgvt38ceY1VfX2/V/SRNltauXdtu0nGl1NRUAIAgCG3+ThTFdm+/0q///tePWbVqleX/Y2NjMXToUEyaNAlpaWmYMGFCu9dcs2YNVq9ebfm6uroa0dHRSEhIgJ+fX6fxdIdOp0NycjJmz54Nlar10oX6dAn+dyEdgpc/5s+fZrPvKWedjRe11ldjdTK/GmcOpMBNIeCvt16Lfv6edvte9iLn15X7wBL87r/pOFThjpfvvgY+avu+5ct5rPoax+oyvUHEYynGRGjJ3OvbFHnbc6zMK0NdkTRZeuihh7rceRYTE4Pjx4+juLi4zd+Vlpa2mTkyCw8PB2CcYYqIiLDcXlJS0uFjAGDChAlQqVQ4e/Zsh8mSWq2GWt12SlulUtnlRd/edfsF+AAwHnni6j9ov2avfwdnZO+x+jglBwCwcEwEYkJs90FCCnJ8Xc2JjcSg4LO4UFaHzelFuPuqgX3yfeU4VlLhWAGV1Y0wiIBCAML9veHWQVNKe4yVtdeTtMA7ODgYI0aM6PSPh4cH4uPjodVqcejQIctjDx48CK1Wi+nTp7d7bfPS2pXTds3Nzdi9e3eHjwGAjIwM6HS6VgmWIzIXwZXWNKFF33fT60TWKtQ24IfjhQCAe68eJHE0rkmhECxjv27fRb5XkEMyF3cH+6g7TJSk5phR/crIkSMxd+5crFq1CikpKUhJScGqVauwcOHCVsXdI0aMwObNmwEYl98effRR/O1vf8PmzZtx8uRJ3HnnnfDy8sLKlSsBAOfPn8fzzz+Pw4cPIzs7G1u3bsWyZcswfvx4zJgxQ5Lnaq0gHzWUCgEGESiva5Y6HKI2Ptl/CS0GEVMHBiK2n+PvMHVWN0/ohyBvd+RXNWDryfZrPImkZG4b4Kg9lgCZJEuAccdaXFwcEhISkJCQgDFjxuCzzz5rdZ+srCxotVrL13/605/w6KOP4oEHHsCkSZOQn5+P7du3W3a6ubu7Y+fOnZgzZw6GDx+ORx55BAkJCdixYweUSsdumqdUCAjxMc4usTElOZq6phb896BxI8U9fbT0Q+3zUClxe3wMAOD9Ped5niQ5nGIH794NyGQ3HAAEBgZi/fr1nd7n128CgiBg7dq1WLt2bbv3j46Oxu7du20VYp8L81OjqLrRMoVJ5Ci+TstDdWMLYoK8MGtkxzWC1DcS4wfgnd3ncDK/GikXKhA/OEjqkIgszL/DHLUhJSCjmSVqi0eekCMyGER8uO8iAOCuGQOhVHS+Y5XsL9DbHb+ZYDyP75P92dIGQ/QrJeZlOAc9RBdgsiRrl488YbJEjmPn6RJkl9fDz8MNS3lgrsO4c3oMAGD7qSLkVVrXW4aoL5TUOHb3boDJkqzxyBNyRP/Za+wot3LqAHjbua8PWW9omC+uGhIMgwh8lnKp6wcQ9REWeJNdhWnMy3CsWSLHcDJfi4MXK+CmEHDH9AFSh0O/codpdmnjoVw0NOulDYbI5HLNEmeWyA7CWLNEDuazA8YZi3lxEYjQyK9bt7O7fkQoogM9oW3Q4dv0fKnDIYJOb0B5nXkZjjNLZAeWmqUaziyR9LT1Onx7zPgL+PZ4zio5IqVCwB2mNgIf789mGwGSXFltE0QRcFMICPRylzqcDjFZkjFzzVJFXTOaWjilTtL68kguGnUGjAj3xaQBAVKHQx1YNikaniolThfVIOVChdThkIszL8GF+KqhcOCds0yWZMzfSwV3U2v4Us4ukYQMBtFSNHx7fEyXB1yTdDSeKtw8oR8AthEg6ZnLSBy5xxLAZEnWBEGwFMSxbomktOdsKS6V18PXww1LxkdKHQ51gW0EyFFc7rHkuMXdAJMl2Qv34444kp65sHvpxCh4ubNdgKMbGuaLGUOCYBCBzw/lSB0OuTDz7y5HLu4GmCzJHnfEkdRyK+rxU1YJACBxGgu75eK2qcZ/qy9S86DTGySOhlzV5R5LnFkiO7q8DMeZJZLG+oOXIIrA1UODMSjER+pwyEo3jApDiK8aZbVNSD5VLHU45KKKTfW2oQ581AnAZEn2zDNLPPKEpNCo0+N/qbkAOKskNyqlArdMigYA/Pcgl+JIGkXaBgBAhD+TJbIj89QljzwhKWw9UYjKeh36+Xti1sgwqcOhbloxJRqCAOw7V4aLZXVSh0MuqFBr/N0VoWGyRHbEmiWSkrk4eMXkaCgduEcKtS8qwAvXDQsBwEJv6nu1TS2oaWwBAIQ7eMd/JksyF8bdcCSRcyU1SM2uhFIhYJlpOYfk51ZTofeXh3PZ3Jb6VJFpVslX7QYfBz90m8mSzJlbBxgzdJ3E0ZAr2XjIWKs0c3gowh18Cp06dt3wEERoPFBZr0PSySKpwyEXYk6W5PD+wWRJ5rzVbvDzMGbkXIqjvtLUosfXaXkAgP83hbNKcuamVGDF5P4AgA0s9KY+VGgq7mayRH3CfLp7QRWTJeob2zKKUVmvQ4TGA9eaal5Ivm4x1ZwduliBs8U1UodDLqJIJsXdAJMlp2DOys0vPCJ7+9w0A7FsUjTclHwbkbtwjQdmjQgFAPyXhd7URwqrzctwjl3cDTBZcgrmrLyQyRL1geyyOhy4UA5BAJZPipI6HLKRlVONS3Gb0vLRqGOhN9kfZ5aoT5mX4czrv0T2tNHUhPLaYSGICvCSOBqylauHhiBS4wFtgw7b2dGb+kAhC7ypL3FmifpKc4sBXx0xJkvmomByDkqFgKWmFhBfHs6VOBpyBZbu3UyWqC+wZon6ys7MYpTVNiPYR41ZI0OlDodsbNlE47LqvnNlyKuslzgacmaNOj0q643tbiL8WLNEfSDS3zyzxGU4sq/PTUtwyydFQcXCbqcTHeiF6YODIIrAV0fypA6HnJj5w72nSgk/T8duSAkwWXIK5p0E1Y0tqGtqkTgaclaF2gbsPVsKwLjVnJyT+d/2y8N5MBhEiaMhZ3XlmXCC4PhHJTFZcgI+ajf4mlrFs26J7GVTWj5EEZgyMBADgrylDofsZM7ocPh6uCG/qgH7z5dLHQ45qeJq+RR3A0yWnEaEP+uWyH5EUbQsyyydyHYBzsxDpcTicZEAgP+x0JvsRE474QAmS07DvBRXwLolsoO0nEpcLKuDl7sSC+IipA6H7OyWScadjkkZRdDW88xJsj057YQDmCw5jQg/ziyR/Xx52DirNC82At4Ofjo49V5sPz+MCPdFc4sB3x7LlzocckKXZ5YcfyccwGTJaUT4s9cS2UdDsx7fHy8EACxjx26XIAgClpt6LnEpjuyhyFSzZP6g7+iYLDmJy40puQxHtrUtowi1TS2IDvTElJhAqcOhPnLT+H5wVypwMr8aGQVaqcMhJ8OaJZKEeSqTy3Bka+bC7t9MiIJC4fhbfMk2ArzdccMoY+PRTWlciiPbaW4xoKy2CQBrlqiPRfLIE7KD/KoG/HK+DIAxWSLXYv43/zY9Hy16g8TRkLMoqWmEKALuSgUCvd2lDscqTJachHkqU9ugQ30zG1OSbWw6kgdRBOIHBSE6kIfmupprhoUgyNsdZbXN2Hu2TOpwyEkUXbEEJ4eGlACTJafh66GCDxtTkg2Jooiv0thbyZWplAosMvVc+jqNx5+QbcitXglgsuRUeKAu2VJqdiUuldfD212JeXHhUodDEjEvxW0/VQxtA3suUe8VXXHUiVwwWXIi5hdeQRV3xFHvfXXEuGV8wZgIeLmzt5KrGh3ph2FhPmhuMeDHE4VSh0NOgDNLJKkIziyRjTTq9Nh6oggAC7tdnSAIuNn0GuCuOLKFompT926Z9FgCmCw5FXP7gMJqJkvUO8mnilHb1IKoAE9MZm8ll7dkXD8IAnAouwI55fVSh0MyJ7fu3QCTJadiaR/AZTjqpW+OGmcQlozrx95KhHCNB64aEgwA2HyUs0vUO4VVXIYjCYWz1xLZQHltE3afKQUALBkfKXE05ChuntAPALDpaB5EUZQ4GpIrnd6A4hrj76h+/pxZsrnKykokJiZCo9FAo9EgMTERVVVVnT5m06ZNmDNnDoKDgyEIAtLT09vcp6mpCQ8//DCCg4Ph7e2NRYsWIS9PnltkI8xdvLkMR73ww4lCtBhExPXTYEior9ThkIOYMzocXu5KXCqvR1pOpdThkEwVaU0NKd0UCJJJQ0pARsnSypUrkZ6ejqSkJCQlJSE9PR2JiYmdPqaurg4zZszA3//+9w7v8+ijj2Lz5s3YuHEj9u3bh9raWixcuBB6vd7WT8HuzIfpVtXr0NAsv/jJMZiXWZaM7ydxJORIvNzdMC82AgDwNQu9qYfMu7UjNR6yWuKXxX7gzMxMJCUlISUlBVOnTgUAfPDBB4iPj0dWVhaGDx/e7uPMyVR2dna7f6/VarFu3Tp89tlnuOGGGwAA69evR3R0NHbs2IE5c+a0+7impiY0NTVZvq6urgYA6HQ66HS260Nivpa11/RQiPB2V6KuWY+cshoMCvG2WSxy0N3xcmUdjdWl8noczamCQgDmjQrhWIKvqystHhuGr9Py8P2xAjw5ZyjUKmWrv+dYWc9Vxyq3vBaAcfe2tc/dnmNl7TVlkSwdOHAAGo3GkigBwLRp06DRaLB///4Ok6WuHDlyBDqdDgkJCZbbIiMjERsbi/3793eYLL344ot47rnn2ty+fft2eHnZ/kiI5ORkq+/rq1SiDgK+Sd6DEf6uWVfQnfFydb8eqx9zBQBKDPMzIHXvTmmCclB8XQEGEfB3V6KqsQWvbtyOcUHtv8dwrKznamO1K8/4HqOvKcPWrVu79Vh7jFV9vXW7O2WRLBUVFSE0NLTN7aGhoSgqKurVdd3d3REQENDq9rCwsE6vu2bNGqxevdrydXV1NaKjo5GQkAA/P78ex/NrOp0OycnJmD17NlQqlVWP2VSWhqKzZYgaFof5k1yrP05PxstVtTdWoijitTd+AVCPe28Yg/njWNwN8HX1a5mqM3h/bzbylBF4cv64Vn/HsbKeq47V/m9PAbl5mDJ6CObPGmLVY+w5VuaVoa5ImiytXbu23RmaK6WmpgJAu4ftiaJol0P4urquWq2GWq1uc7tKpbLLi747140yHXZaVNPsUj+AV7LXv4MzunKsjuZU4lJFPTxVSswb0w8qlSw+S/UZvq6MbpoQjff3ZmP3mTLUtwAaz7ZjwrGynquNVVG1sYSlf5BPt5+3PcbK2utJ+m740EMPYcWKFZ3eJyYmBsePH0dxcXGbvystLUVYWFiPv394eDiam5tRWVnZanappKQE06dP7/F1pdQvwLgjLr+SvZaoe8y9leaMDoO3mokStW9khB+Gh/kiq7gG204WYfnkaKlDIhmxFHjLqG0AIPFuuODgYIwYMaLTPx4eHoiPj4dWq8WhQ4csjz148CC0Wm2vkpqJEydCpVK1WgctLCzEyZMn5ZssmV6A+WxMSd2g0xvw3XHjuV/cBUddWWRaov32GHfFkfVEUbwiWZJPQ0qgG8nSkiVL8P3338NgMNgznnaNHDkSc+fOxapVq5CSkoKUlBSsWrUKCxcubFXcPWLECGzevNnydUVFBdLT03Hq1CkAQFZWFtLT0y31SBqNBvfccw8ef/xx7Ny5E0ePHsVtt92GuLg4y+44uWGyRD2x92wpKuqaEezjbunUTNSRRWONydL+8+UoYV83slJ1QwvqTG1tnHZmqaGhAUuWLEFUVBSefPJJnD171p5xtbFhwwbExcUhISEBCQkJGDNmDD777LNW98nKyoJWq7V8vWXLFowfPx4LFiwAAKxYsQLjx4/Hu+++a7nP66+/jiVLlmD58uWYMWMGvLy88N1330GpbL0lVi7My3BF2kboDa65G466b/PRAgDAjWMj4aaUTfs1kkh0oBcmDgiAKMIyI0nUFfOH+CBvd3io5PU71urChG3btiEvLw8fffQRPvnkE/zjH//AjBkzcO+992LZsmXw9LRvlhgYGIj169d3ep9ft+C/8847ceedd3b6GA8PD7z11lt46623ehuiQwj19YCbQkCLQURJTaOlqzdRR2qbWpB8yjjbehOX4MhKi8dF4silSmxJz8c9Vw2UOhySgXyZ1isB3axZioqKwtNPP41z585hx44dGDBgAB544AGEh4fjt7/9LQ4ePGivOMlKSoVgOSOORd5kje0ZRWjUGTAo2Btx/TRSh0MyMT8uAkqFgGN5Wlwsq5M6HJIBc72SnM6EM+vxfPvMmTPx2WefobCwEC+99BK++uorzJgxw5axUQ+xbom6Y8sx4xLconGRdmnFQc4p2EdtqW/bkl4gcTQkB3LdCQf0cjfchQsX8PLLL+OFF16AVquVbVG0szEnS3mcWaIuVNQ1Y9/ZMgDGeiWi7lh8xa64X5dBEP1avkx3wgE9SJYaGhrw6aefYubMmRg6dCg+++wz3Hvvvbh48SKSkpLsESN1k7nIu4AzS9SF7adK0GIQMTrSD4NDfKQOh2QmYXQ41G4KXCitQ0aBdZ2QyXW5xDLc/v37sWrVKkt9Unh4OLZt24aLFy/imWeeQXQ0G5M5Ci7DkbW+P2HcycRZJeoJH7UbbhhlbAxsbmpK1JGCKmObCadehrvqqqtw+PBhvPDCCygoKMDnn3/OZTcHZX4hssCbOqNtBg5lVwIAFo6JkDgakqvFpkT7u+MFbFdCHdLpDSiuMSZL5tUPObG6dcDhw4cxYcIEe8ZCNnLlMpy9zs8j+TtaLkAUgYkDAhAV4CV1OCRT1w4PgZ+HG4qrm5BqSr6Jfq1I2whRBNzdFAjydpc6nG6zembpykRp7969uO222xAfH4/8fOPU62effYZ9+/bZPkLqNvMyXF2zHtoGncTRkKNKKzP++C/iEhz1gtpNiflxxplJNqikjuRfUa8kxw/w3S7w/vrrrzFnzhx4enri6NGjaGoyniBcU1ODv/3tbzYPkLrPQ6VEsI8xc+eOOGpPTkU9LtUKUAiw/KIj6qnF44zNTJMyitHS9ydikQzI9Uw4s24nS//3f/+Hd999Fx988AFUKpXl9unTpyMtLc2mwVHPRbLImzqx9YSxY/e0QYEI8VVLHA3J3dSBgQjzU6O6sQWZVfKbNSD7syRLMj1VotvJUlZWFq655po2t/v5+aGqqsoWMZENmJfi2D6A2vO9KVlaGBcucSTkDBQKAQvijMu5R8uZLFFbcj7qBOhBshQREYFz5861uX3fvn0YNGiQTYKi3uvHHXHUgTPFNcgqroVSEJFg2vZN1FsLTDsqT1YIaNTpJY6GHI25JCQ6UJ6bSbqdLP32t7/F73//exw8eBCCIKCgoAAbNmzAH/7wBzzwwAP2iJF6gMtw1JHvTcebjPQXofFUdXFvIutM6O+PSI0HmgwCdp8pkzoccjC5FfUAgCgZtg0AutE6wOxPf/oTtFotZs6cicbGRlxzzTVQq9X4wx/+gIceesgeMVIPsIs3tUcURctZcOOD2BOHbEcQBMyLDcO6Xy5h68kiLBwXJXVI5CAMBtHywd1lZpYA4IUXXkBZWRkOHTqElJQUlJaW4q9//autY6NeYBdvas/J/Gpkl9fDQ6VAXCCTJbKtBaYauF1ZpahvbpE4GnIUxTWN0OlFuCkEhMl0Q0mPD9L18vLCpEmTMGXKFPj48EwpR2NOlspqm1k/QBZbjhn7ol0/PARqpcTBkNOJjfRDkFpEg86AnZklUodDDsJcrxTh7wE3ZY/TDknJM2rqkr+XCl7uxt+GnF0iwDgV/r2paeBC9lYiOxAEAeODjTOW3x8vkDgachR5lcZ6pWgZnxTAZMlJCYLAHXHUyuFLlSjUNsJX7YZrhgZJHQ45qQlBxq6Uu7JKUdPIEwQIyK0w/g6Sa3E3wGTJqZlfmOziTcDlT/oJo8OhVnENjuwj0gsYGOSF5hYDdmQWSx0OOQCXnFmqq6uzRxxkB+ZdBzmmLZvkuvQG0dK1e+FYLsGR/QgCMN9U6P0Dz4ojXDGzFOhCM0thYWG4++67eWiuDPQ3JUu5lUyWXF1qdgXKapug8VRhxuBgqcMhJ7cg1pgs7T5TysO8CXlV5h5LLjSz9Pnnn0Or1WLWrFkYNmwY/v73v6OggIV8jsj8wszjzJLLM3/CTxgVBnc3rr6TfQ0N88GwMB/o9CK2ZxRJHQ5JqEVvQGFVIwAXW4a78cYb8fXXX6OgoAC/+93v8Pnnn2PAgAFYuHAhNm3ahJYW9tZwFNGmKc9c1iy5NL1BxI8njb+wzEdSENnbwjHGs+K+51KcSyuqbkSLQYS7UoFQmfZYAnpR4B0UFITHHnsMx44dw2uvvYYdO3Zg6dKliIyMxDPPPIP6es5mSM1cs1RR14zaJiaxrurQxSuW4IZwCY76xkJTYv7LuTJU1jVLHA1JxbzBqF+AJxQK+R6y3ONkqaioCC+99BJGjhyJP//5z1i6dCl27tyJ119/HZs3b8aSJUtsGCb1hJ+HynL2Vy6X4lzW1hOXl+BUMm0IR/IzKMQHoyL80GIQkcSlOJcl9zPhzLp9NtymTZvw0UcfYdu2bRg1ahQefPBB3HbbbfD397fcZ9y4cRg/frwt46Qe6h/ohRP5WuRW1GNkhJ/U4VAf4xIcSWnBmAicKqzG98cL8P+m9Jc6HJKAeWZJzsXdQA9mlu666y5ERkbil19+QXp6Oh566KFWiRIADBo0CE899ZStYqReYN2Sa+MSHEnpRlPd0oHz5SirbZI4GpLC5WTJxWaWCgsL4eXVeYbo6emJZ599tsdBke2Ydx9wGc41mZfg5ozmEhz1vf5BXhgTpcHxPC1+PFmExGkDpA6J+pi5dY3ck6Vuv3u2tLSgurq6zZ+amho0N7OIz9FEmYq889hryeVcuQQ3n2fBkUTMhd7fH2OLGVdkPm7LvOFIrrqdLPn7+yMgIKDNH39/f3h6emLAgAF49tlnYTAY7BEvdVN/dvF2WVyCI0ewwLQUdyi7AiXVjRJHQ31JpzegUOscy3DdTpY+/vhjREZG4sknn8Q333yDzZs348knn0S/fv3wzjvv4L777sObb76Jv//97/aIl7op2vQCza1ogCiKEkdDfYlLcOQI+vl7Yly0P0QR2MZdcS6lsKoRBhFQuykQ4iPfHktAD2qWPvnkE7z66qtYvny55bZFixYhLi4O7733Hnbu3In+/fvjhRdewJNPPmnTYKn7+gV4QhCABp0e5XXNCJb5C5aswyU4ciQL4iKQnluFH04UIjE+RupwqI9cWa8kCPLtsQT0YGbpwIED7bYFGD9+PA4cOAAAuOqqq5CTk9P76KjX1G5KhPl6AGCRtyvhEhw5krmms+IOXaxAaQ13xbkKc/lHf5nXKwE9SJaioqKwbt26NrevW7cO0dHRAIDy8nIEBAT0PjqyCXP7ANYtuY4fThiLabkER44gOtALY6M0MHApzqVcKjf+zhkQ5C1xJL3X7WW4V155BcuWLcOPP/6IyZMnQxAEpKam4vTp0/jqq68AAKmpqbjllltsHiz1THSgF1KzKy39Lsi56Q0ikrgERw5mXlwEjuVpsfVEIW5jCwGXkFNRB0D+O+GAHswsLVq0CGfOnMH8+fNRUVGBsrIyzJs3D6dPn8bChQsBAL/73e/w2muv2TxY6hn2WnItBy+Wo6y2mUtw5FAWmBL3lAvlKGeDSpdgmVlygmSpWzNLOp0OCQkJeO+99/Diiy/aKyayMXNWn8teSy6Bu+DIEUUHeiGunwYn8rXYllGMlVN5/IkzE0UROZZlOPknS916J1WpVDh58qTsq9pdzZXtA8i5XbkEZ+5vQ+Qo5sUZC73NCT05r8p6HWqaWgC46DLc7bff3m6BNzmu/qasPr+qAS16Ngt1ZuYlOH8vFaYPDpI6HKJWzEtxBy6Uo6KOJz44s0vlxnqlcD8PeKiUEkfTe90u8G5ubsZ//vMfJCcnY9KkSfD2bl3lzlolxxPm6wF3NwWaWwwoqGq0JE/kfCxLcKPCuQRHDmdAkDdGR/oho6Aa2zOKsGIKl+KclaVtgJP8vul2snTy5ElMmDABAHDmzJlWf8flOcekUAgYEOiFsyW1yC6vc5oXL7XWahfcGO6CI8c0Py4CGQXV2HqSyZIzy3Gi4m6gB8nSrl277BEH2dmAIG+cLak1TY2GSB0O2QGX4EgO5sWG4+VtWdh/rgxV9c3w93KXOiSyg0sVzlPcDfSgZsns3Llz2LZtGxoajEXD9j53rLKyEomJidBoNNBoNEhMTERVVVWnj9m0aRPmzJmD4OBgCIKA9PT0Nve57rrrIAhCqz8rVqywz5OQUIzpBZtdzh1xzopLcCQHg0J8MCLcFy0GEdsziqUOh+zEPLPkDMXdQA+SpfLycsyaNQvDhg3D/PnzUVhofIO+99578fjjj9s8QLOVK1ciPT0dSUlJSEpKQnp6OhITEzt9TF1dHWbMmNHlob6rVq1CYWGh5c97771ny9Adgjm7v8RkySlxCY7kxFzovfUkd8U5q0umhpTO0L0b6MEy3GOPPQaVSoWcnByMHDnScvstt9yCxx57DK+++qpNAwSAzMxMJCUlISUlBVOnTgUAfPDBB4iPj0dWVhaGDx/e7uPMyVR2dnan1/fy8kJ4eLjV8TQ1NaGp6XJTterqagDGPlQ6nc7q63TFfC1bXLOfv/EA3eyyWpvG6EhsOV5yk3KhwrgE56nC5P5+XY6BK49Vd3GsrGftWCWMDMGryWfwy7kylFXXQ+Op6ovwHIozv64adXoUVxt/R0b6qXr9HO05VtZes9vJ0vbt27Ft2zZERUW1un3o0KG4dOlSdy9nlQMHDkCj0VgSJQCYNm0aNBoN9u/f32GyZK0NGzZg/fr1CAsLw7x58/Dss8/C19e3w/u/+OKLeO6559rcvn37dnh52X7KMTk5udfXKGsEADdkl9Xi+x+2QuHEtfi2GC+5+d8FBQAFRvg2IXlbktWPc8Wx6imOlfWsGasITyUKG4DXv9iBKaH2LeNwZM74uiqsBwA3eCpF7N+1A7ba+2WPsaqvt261pdvJUl1dXbsJQVlZGdRqdXcvZ5WioiKEhoa2uT00NBRFRb07lPHWW2/FwIEDER4ejpMnT2LNmjU4duxYp/8oa9aswerVqy1fV1dXIzo6GgkJCfDz8+tVPFfS6XRITk7G7NmzoVL17pNXi96AF4/tRIsBmHjV9YjQeNgoSsdhy/GSE71BxPMv7QbQjPvmTsLVQ7s+4sRVx6onOFbW685Ynfc8jzd/Oo98ZRjmz5/QRxE6Dmd+Xe3MLAGOpWNQmB8WLIjv9fXsOVbmlaGudDtZuuaaa/Dpp5/ir3/9KwBjuwCDwYCXX34ZM2fO7Na11q5d2+4MzZVSU1Mt3+fXRFHsdbuCVatWWf4/NjYWQ4cOxaRJk5CWlmZpkfBrarW63cRQpVLZ5UVvi+uqVMZCu4tldcjXNqN/cMczZ3Jnr38HR5V6vgzldcZdcFcP794RJ642Vr3BsbKeNWN149h+ePOn8/jlfDnqW+CSS3GAc76u8rTGJbiYIB+bPjd7jJW11+t2svTyyy/juuuuw+HDh9Hc3Iw//elPyMjIQEVFBX755ZduXeuhhx7qcudZTEwMjh8/juLitrsmSktLERYW1q3v2ZUJEyZApVLh7NmzHSZLcjUgyJgsXSqvQzy3ljuNH08YZ1cTRvEsOJKPoWG+GBrqg7MltdiZWYybJ0R1/SCSBWdrSAn0IFkaNWoUjh8/jnfeeQdKpRJ1dXW4+eab8eCDDyIionu7cIKDgxEc3PWSQXx8PLRaLQ4dOoQpU6YAAA4ePAitVovp06d39yl0KiMjAzqdrtvPRQ7MzcHYPsB56A0ikjKMydK8OOd7zZJzmx8XgX/uPIutJwqZLDmRS07WkBLoQbIEAOHh4V0un9nSyJEjMXfuXKxatcqyrf++++7DwoULWxV3jxgxAi+++CJuuukmAEBFRQVycnJQUFAAAMjKyrLEHx4ejvPnz2PDhg2YP38+goODcerUKTz++OMYP348ZsyY0WfPr6+Yt3Caz+wh+TucXYHSmib4ebhhxuCuP3gQORJzsrTnTBlqGnXw9XCu5ShXxZklk6qqKhw6dAglJSUwGFofzHr77bfbJLBf27BhAx555BEkJCQAABYtWoS333671X2ysrKg1WotX2/ZsgV33XWX5Wvzkt+zzz6LtWvXwt3dHTt37sQ///lP1NbWIjo6GgsWLMCzzz4LpVL+B//9Wkwwey05mx9NvZVmjwqHuxuX4EhehoX5YHCIN86X1mFnZgmWjO8ndUjUS3qDiLxKU7LkyjNL3333HW699VbU1dXB19e3VYG1IAh2S5YCAwOxfv36Tu/z6y7id955J+68884O7x8dHY3du3fbIjxZuHJmyRbF8SQtg0HEj6amfgvGWN8njMhRCIKABXERePOnc/jhRCGTJSeQX9kAnV6Eu5sCkRpPqcOxmW5/FH388cdx9913o6amBlVVVaisrLT8qaiosEeMZCNRAZ5QCEBdsx5ltc1Sh0O9lJZTieLqJviq3TBjCJfgSJ7MtXa7z5SitqlF4mioty6U1QIwHrGlcKKGft1OlvLz8/HII4/Ypfki2ZfaTYlIf2Omz7ol+dtq2gV3w6gwqN2cb9mYXMOIcF8MCvZGc4sBOzN5VpzcZZcZf7cMDHaOY07Mup0szZkzB4cPH7ZHLNQHBvBAXadw5RLcfO6CIxkTBAHz4ozLyOY2GCRfFy3Jko/EkdhWt2uWFixYgD/+8Y84deoU4uLi2jR0WrRokc2CI9sbEOSNX86VI4czS7KWnleFQm0jvN2VVnXsJnJk8+Mi8K9d57ErqwR1TS3wVvdo7xE5gAumZGmQk80sdfsVae54/fzzz7f5O0EQoNfrex8V2U2MaWbpImeWZO3HE8ZZpVkjw+Ch4hIcyduoCD/EBHkhu7weP50uwY1jI6UOiXrIPLMU42TJUreX4QwGQ4d/mCg5vhjTjjjzujLJjyiKlnolLsGRMzAuxRlfy+blZZKfRp0e+VUNAFizRDI3KMS4jnyhtLZNqwWSh+N5WuRXNcDLXYnrhodIHQ6RTSwwJUs/nS5BfTN3xclRbkU9RBHwVbsh2Mdd6nBsyupkaf78+a0aPr7wwguoqqqyfF1eXo5Ro0bZNDiyvf6BXlAqBNQ161FS0yR1ONQDW02fvGeOCOUSHDmN0ZF+6B/ohUadAbtOl0odDvWAuV5pYIi30/XxszpZ2rZtG5qaLv9y/cc//tGqr1JLS4vlOBFyXO5uCkQHGNsHnC+tlTga6i5RFC07hhZwCY6cyJW74rae4FKcHF100rYBQDeSpV8v2XAJR74uL8WxbkluMgqqkVNRDw+Vgktw5HSuXIpraGYNrNxcNP1OMdfGOhPWLLkg85bOiyzylh3zJ+6Zw0Ph5c7t1eRc4vppEBXgiQadHj9nlUgdDnXTRVNLmkEhLpwsCYLQZg3S2dYkXcVA0wv5ApfhZMW4C46NKMl5mc+KA4AfuBQnO868DGf1R1NRFHHnnXdCrVYDABobG3H//ffD29s4KFfWM5FjG2TqrHqBM0uykllYg+zyeqjdFJg5IlTqcIjsYn5cBN7bcwE/nS5Bo07PTQwyUdOoQ6lp05Cz9VgCupEs3XHHHa2+vu2229rc5/bbb+99RGR3g00zS7kV9Whq0fNcMZkw95+5dlgIfNjhmJzUmCgN+vl7Ir+qAT9nlWBuLGdR5SC7zNjoONjHHX4eqi7uLT9Wv+N+9NFH9oyD+lCIrxre7krUNeuRW1GPIaG+UodEXRBF0bIssWAMf3mQ8xIEAfPjwvHB3ov44UQRkyWZMNcrOeMSHMACb5ckCIJlR9x57oiThTPFtbhQWgd3pQLXcwmOnJy5Jm9nZjEaddwVJwfmnXBMlsipDLIUeTNZkgNzYfc1w4Lh64RT3ERXGhftj37+nqhv1mP3GTaolIOLZcYNQwNNNbHOhsmSi7IUeXNHnCxwFxy5EkEQMC+WDSrl5DxnlsgZWdoHcEecwztbXIOzJbVQKQXMGhkmdThEfWL+GPNSXAmX4hycwSBaToQYEsqZJXIibEwpHz+eNB5vctWQYGg8uQRHrmFclD8iNB6obWrBHi7FObTC6kbUN+vhphAwIMhL6nDsgsmSizLXLFXUNaOqvlniaKgzXIIjV6RQCJhn2gnHpTjHdq7EOKsUE+wNldI50wrnfFbUJS93N0RoPABwR5wjO19ai9NFNXBTCJg9iktw5FoWjDHWLe3gUpxDMydLQ0KccwkOYLLk0syFeCzydlxJpiW46UOC4e/lLnE0RH1rfHQAwv2MS3F7z5ZJHQ51wJIsOWm9EsBkyaWZX9jnmCw5rB+OmxpRxoVLHAlR31MoBMwzvfZ/5FKcwzrPZImc2VBzslTMZMkRZZfV4VRhNZQKAbNHMVki12Su1Us+VYymFi7FOaJzTr4TDmCy5NLMx5ycLWGy5IjMu+DiBwUh0JtLcOSaJvYPQJifGjVNLdjHpTiHU1HXjIo64yYh88YhZ8RkyYUNCzN+CsitrEdDMz+xORrugiNqvSvuBy7FORxzvVI/f094uTvvAd9MllxYkI8agd7uEEVYGoqRY8itqMeJfC0UApAwmrvgyLVxKc5xuUJxN8BkyeWZX+BnS2okjoSu9ONJ4yfoqQODEOyjljgaImlNGhCAUF81ahpb8Ms5LsU5EiZL5BLMRd5nWeTtUH44YaxXMh/5QOTKFAoBcy1nxRVJHA1dyRWKuwEmSy7PkiyxyNth5FXW41huFQQBmMMlOCIAl5fitmcUobnFIHE0ZOYKbQMAJksub2iYcUfcOSZLDsPciHJyTCBCfT0kjobIMUyOCUSwjxrVjS345TyX4hxBXVML8qsaADh3926AyZLLG2raEXepvI7HCTgI846f+bHsrURkplQImGdeijvOXXGO4ILpqKwgb3cEOHl7EyZLLi7ERw2NpwoG8fILn6STV1mPoznGJTi2DCBqzbIUd6oYOj2X4qR2rtS4MWiwky/BAUyWXJ4gCFfULXFHnNTMvZWmxAQi1I9LcERXmjIwEME+7tA26LgrzgGcMW0MGspkiVyBeSmOdUvSM58Ft3BspMSREDkepULAnNHms+K4K05qWUXGD9gjwn0ljsT+mCzR5WNP2D5AUrkV9TiWZ2xEOXc065WI2rPAtBS37VQRl+IkZk6Whof7SRyJ/TFZIi7DOYjvTbNK0wYFIcSXjSiJ2jNlYCCCvN1RVa/DgfPlUofjsmoadZadcMPDOLNELsC8DJddXs+jBCT0w4kCAMDCMVyCI+qIm1KBOZYGldwVJ5UzxcYP1+F+HtB4qSSOxv6YLBHC/Tzg6+EGvUHkjjiJZJfV4WR+takmg40oiTpjWYrL4FKcVLKKjGUbw12gXglgskQw7ogzF+iZ16Cpb5l7K00fHIQgngVH1KmpAwMR6O2OynodUi5wKU4KWUXVAJgskYsZYSrQyzT9AFDfMtcrLeRZcERdclMqLDOwXIqTRpZpGc4V6pUAGSVLlZWVSExMhEajgUajQWJiIqqqqjq8v06nwxNPPIG4uDh4e3sjMjISt99+OwoKClrdr6mpCQ8//DCCg4Ph7e2NRYsWIS8vz87PxvGMiDC+4E8Xcmapr50vrUVmYTXcrtgWTUSdm29ZiitGC5fi+pQoilfshGOy5FBWrlyJ9PR0JCUlISkpCenp6UhMTOzw/vX19UhLS8PTTz+NtLQ0bNq0CWfOnMGiRYta3e/RRx/F5s2bsXHjRuzbtw+1tbVYuHAh9HrXKnQ2zyyd5sxSnzP3VrpqaDD8vZz7yAAiW4kfFIQALxUq6ppxgEtxfaq0pgmV9TooBOc/QNfMTeoArJGZmYmkpCSkpKRg6tSpAIAPPvgA8fHxyMrKwvDhw9s8RqPRIDk5udVtb731FqZMmYKcnBz0798fWq0W69atw2effYYbbrgBALB+/XpER0djx44dmDNnTrvxNDU1oampyfJ1dbUxwdDpdNDpdDZ5zubrXflfexoUZOwWXVzdhOKqOgTK8JyfvhwvW/ruWD4AYO6o0D6LXa5jJQWOlfX6eqzmjA7DxtQ8fHs0H9Ni/Pvke9qKnF9XGflVAICYIC8oYYBOZ9+ZPXuOlbXXlEWydODAAWg0GkuiBADTpk2DRqPB/v37202W2qPVaiEIAvz9/QEAR44cgU6nQ0JCguU+kZGRiI2Nxf79+ztMll588UU899xzbW7fvn07vLy8uvHMrPPrpM9egtRKlDcJ+GzLTgzViH3yPe2hr8bLFgrrgbMlblAKIsS8Y9hadKxPv7+cxkpqHCvr9dVYBdcJAJT44Vge4lWX4CabtZLL5Pi62lVgHHdfQy22bt3aZ9/XHmNVX19v1f1kkSwVFRUhNDS0ze2hoaEoKrKu5X1jYyP+/Oc/Y+XKlfDz87Nc193dHQEBAa3uGxYW1ul116xZg9WrV1u+rq6uRnR0NBISEizXtgWdTofk5GTMnj0bKpX9+1h8X5WO5MwSaGJGYX78ALt/P1vr6/GyhTd/OgfgAq4ZFoKliyb02feV41hJhWNlvb4eK71BxP9e2YOSmiZ4D5mEWSPa/p5wVHJ+Xe3edBK4VIBrxw7F/OsH2/372XOszCtDXZE0WVq7dm27MzRXSk1NBWDc3v5roii2e/uv6XQ6rFixAgaDAf/+97+7vH9X11Wr1VCr227vVqlUdnnR2+u6vzYyUoPkzBKcLamT3Q/vlfpqvHpLFEVsPVkMALhxbD9JYpbLWDkCjpX1+mqsVAAWjInAR79k48eMEsyN62f372lrcnxdnTP14xvVT9OnsdtjrKy9nqTJ0kMPPYQVK1Z0ep+YmBgcP34cxcXFbf6utLQUYWGdN/DT6XRYvnw5Ll68iJ9++qnVzE94eDiam5tRWVnZanappKQE06dP7+azkb+Rpl0Np9lrqU9kFdfgfGkd3N0UmD2KjSiJeuLGsZH46JdsJJ8qRkOzHp7uSqlDcmp6g2jp3j3MRdoGABInS8HBwQgODu7yfvHx8dBqtTh06BCmTJkCADh48CC0Wm2nSY05UTp79ix27dqFoKCgVn8/ceJEqFQqJCcnY/ny5QCAwsJCnDx5Ei+99FIvnpk8jYgwJpJZRTXQG0QoFV3P2lHPfX/MuAvu2mEh8PWQ1ydLIkcxPtof/fw9kV/VgJ9Ol2ABe5XZVU5FPRp1BqjdFBgQ5C11OH1GFuVwI0eOxNy5c7Fq1SqkpKQgJSUFq1atwsKFC1sVd48YMQKbN28GALS0tGDp0qU4fPgwNmzYAL1ej6KiIhQVFaG5uRmAccfcPffcg8cffxw7d+7E0aNHcdtttyEuLs6yO86V9A/0gqdKiaYWA7LLeeyJPYmiaOnazUaURD0nCAJuHGs8T/G7YwVd3Jt6K6NAC8D44dqVPlDLIlkCgA0bNiAuLg4JCQlISEjAmDFj8Nlnn7W6T1ZWFrRa4z9kXl4etmzZgry8PIwbNw4RERGWP/v377c85vXXX8eSJUuwfPlyzJgxA15eXvjuu++gVLreVK5SIWBYOJtT9oVThdW4WFYHtZsCs0ZyCY6oN24ca/zAsSurBDWN8tuKLycZBcaC6NGRttvMJAey2A0HAIGBgVi/fn2n9xHFy9vdY2JiWn3dEQ8PD7z11lt46623eh2jMxgZ7otjuVU4XVTN6Ww7+s60BDdzeCh81LL5MSRySKMi/DAoxBsXSuuwI7MYN42Pkjokp+WqyZJsZpaob5gP1M3kzJLdGAyiZblg0bhIiaMhkj9BEHDjGPNSHM+KsxdRFHHKtAw3OlIjcTR9i8kStWIu8s4s5LEn9pKWU4n8qgb4qN1wvYz6whA5MvNS3J4zpaiqb5Y4GudUUtOEstpmKBWC5YO1q2CyRK2MMk2t5lc1oLKObzj28G26cVYpYXQYPFSuVxtHZA9DQn0xMsIPLQYRSSeta1ZM3WMu7h4c4u1y711MlqgVPw8VYoKMR7acNP1gkO3o9AZsNe2CWzxOfg30iByZeXbpu+PcFWcPGfnGFYdREa5VrwQwWaJ2xPYzrkWfyGeyZGu/nCtDeV0zgrzdMWNwUNcPICKrmeuWDpwvR0lNo8TROJ/Lxd2uVa8EMFmidpiTJfOnCLKdLaYluAVjIuCm5I8fkS1FB3phXLQ/DCLw4wkuxdlaRqG5uJszS0SI48ySXTTq9NiWYXwDX8xdcER2wQaV9qFt0CG3ogHA5dpWV8Jkidowf2rIqaiHtp4N3mxlZ2YJ6pr16OfviQn9A7p+ABF124K4CAgCcPiScdcp2cYp0xJcP39P+Hu5SxxN32OyRG34e7kjOtATwOXdD9R7W47lAzD2VhIE1zkmgKgvhWs8MCUmEABnl2wpo8B1l+AAJkvUgVhTAR93xNmGtkGHXadLAQCLxnIJjsiezDtNvzmaL3EkzuOUCxd3A0yWqAOXd8SxyNsWtmUUoVlvwLAwH5dr5kbU1xbERcBdqcDpoho22LURVz3mxIzJErXr8o44zizZgnkX3OJx/bgER2RnGi8VZo4IAQB8k87Zpd6qb27B2RLjEVhjojizRGQRa/r0cKGsjqd491JJTSP2ny8DcLkPDBHZ103jjUtx3x4tgMHQ9aHq1LGT+dUwiEC4nwdC/TykDkcSTJaoXUE+akRqjD8U5rVq6pkfjhfCIALj+/ujv6k7OhHZ13XDQ+Hn4Yai6kakXCyXOhxZO5ZbBcB1Z5UAJkvUCXbytg3zWXAs7CbqOx4qJRaMMR5/wkLv3jmWVwUAGBvtL2kcUmKyRB0yN6c8nsdkqaculNYiPbcKSoWAhVyCI+pTS0y74n48UYRGnV7iaOTLkixF+Usah5SYLFGHxpsaJx7NrZQ4EvnabPpEe83QYIT4qiWOhsi1TI4JRD9/T9Q0tWBnZonU4chSRV2zpXN3HJfhiNoaE62BIAC5FQ0oq22SOhzZMRhES7J004QoiaMhcj0KhWA5Wmgzl+J65LhpVmlQsDc0nippg5EQkyXqkJ+HCkNCfAAA6TlV0gYjQ6nZFcirbICv2g0Jo8KkDofIJZl3xf2cVYKKumaJo5GfY7nGMgxXrlcCmCxRF8b39wfApbieMH+SnR8XAQ+VUuJoiFzT0DBfxPbzQ4tBxA8nCqUOR3bMM0uuvBMOYLJEXTDXLaWbto6SdRp1evxw3PjGfNOEfhJHQ+TalvD4kx4RRdFS3D3GhYu7ASZL1IVxpqnXY7la6NnYzWrJp4pR09SCfv6elkM9iUgai8ZGQiEARy5VIqe8XupwZCO/qgFltc1wUwgue8yJGZMl6tSwMF94uStR29SCcyW1UocjG5bC7vH9oFDweBMiKYX6eWDGkGAAPP6kO45cMpZfjI70c/lSAiZL1CmlQrCsVaezbskqpTVN2H2mFACX4IgchbnQe1NaHkSRs+TWSDMlSxMGBEgcifSYLFGXLP2WuCPOKt8dK4DeIGJctD8Gm3YTEpG05owOh5e7Etnl9Th8iR/8rHEkxzhOE5ksMVmiro031S0xWbLOpqN5AICbOatE5DC81W5YEGc8/uTLw7kSR+P46ppakFlYA4DJEsBkiawwztQ+4ExJDWqbWqQNxsGdKa7ByfxqqJQ83oTI0SybFA3AeLh1fTPfyzpzLK8KeoOISI0HIjSeUocjOSZL1KVQXw/08/eEKLI5ZVe+OmKcVbpueCgCvd0ljoaIrjQ5JgAxQV6oa9Zj64kiqcNxaKxXao3JElllUozxByY1u0LiSByXTm/ApjRjsrTc9AmWiByHIAhYOtF49BCX4jpn3gnHJTgjJktklSkDjb2CDl1kstSRn06XoKy2GSG+aswcHiJ1OETUjpsnREEQgIMXK9hzqQMGg4g00yoCkyUjJktkFXNjxaO5lWhuMUgcjWP6X6rxk+rNE/rBTckfLSJHFOnviatMPZe+OsLZpfZcKKuFtkEHD5UCIyNcuxmlGd/RySpDQn0Q4KVCo86AkwVaqcNxOMXVjdiVVQKAS3BEjs68FPd1Wj4MPJmgjdRs4xLc2Ch/qPjBDwCTJbKSIAiYZJpdSuVSXBtfp+XBIAKTBgSwtxKRg5szOhy+Hm7Ir2rA/vPlUofjcFIuGMdk6kAe1WTGZImsZl6KY5F3a6Io4svDpsLuyZxVInJ0HiolFo01tvb4kktxrYiiiIMXjO/x0wYFSRyN42CyRFYzF3mnZldy6voKqdmVuFhWB293paXpHRE5NnPPpaSTRdA26CSOxnFcKq9HUXUj3JUKy+kNxGSJumF0pB+83JXQNuhwpqRG6nAcxv9MW5AXjomEt9pN4miIyBpjozQYFuaDphYDthwrkDoch3HwonEJbmy0Bp7urn147pWYLJHV3JQKTDB90mALAaOaRh1+OF4IAFg+OUriaIjIWoIg4JbJ/QEA/z2Yw8N1TVK4BNcuJkvULeaCvwMsigQAfH+8EA06PQaFeFsSSSKSh99M6Ad3NwUyC6uRnlsldTiSM9YrGd/bmSy1xmSJumW6qT/JgQvlrFuC8RMpAKyYHA1BECSOhoi6w9/LHQtNdYbmn2VXllvRgAJtI1RKgR/+foXJEnXL2CgNfNRuqKrX4VRhtdThSOpYbhVO5Gvh7qbA0oncBUckRyunGpfivjte4PKF3uaWAWOj/Fmv9CtMlqhb3JQKy1LcvnNlEkcjrQ0HLwEAFsRF8NBcIpmaOCAAw8J80Kgz4Juj+VKHI6kD5v5Kg9hf6deYLFG3mZfifnHhZEnboLPsoLnV9MmUiORHEASsnMJCb1EUsfes8T39qiE82/LXZJMsVVZWIjExERqNBhqNBomJiaiqqurw/jqdDk888QTi4uLg7e2NyMhI3H777SgoaL1F9LrrroMgCK3+rFixws7PRt7M5yqlZlegqUUvcTTS2JyWh0adAcPDfHnQJJHM3TQhCh4qBbKKa5CWUyl1OJI4XVSDstomeKqUmDDAX+pwHI5skqWVK1ciPT0dSUlJSEpKQnp6OhITEzu8f319PdLS0vD0008jLS0NmzZtwpkzZ7Bo0aI29121ahUKCwstf9577z17PhXZGxbmg2AfNRp1Bhw1nUztSkRRxAZTMeit0/qzsJtI5jSeKiwcY+zovcFFC733ni0FAEwbFAi1G+uVfk0WHfQyMzORlJSElJQUTJ06FQDwwQcfID4+HllZWRg+fHibx2g0GiQnJ7e67a233sKUKVOQk5OD/v0vL514eXkhPDzc6niamprQ1NRk+bq62ljorNPpoNPZrkDQfC1bXtNWpg0MwPcnirAnqwQTox3jVOq+Gq/U7EqcLamFp0qBhbGhDvnv0xVHfm05Go6V9eQ8VssnRuKrI3n44Xghnpw7DBpPlV2/n6ON1e4sY7I0fXCgw8RkZs+xsvaagiiDBdoPP/wQq1evbrPs5u/vj9dffx133XWXVdfZsWMHEhISUFVVBT8/4y/46667DhkZGRBFEWFhYZg3bx6effZZ+Pr6dnidtWvX4rnnnmtz+3//+194eXlZ/8Rk7ECxgI0XlBjgI2J1nGstxX16VoEjZQrEhxqwYrBB6nCIyAZEEXjpuBIF9QKWDNBjZqTD/2q0mWY9sCZViRZRwJqxLQh3jV9jAIyrUCtXroRWq7XkBe2RxcxSUVERQkND29weGhqKoqIiq67R2NiIP//5z1i5cmWrAbn11lsxcOBAhIeH4+TJk1izZg2OHTvWZlbqSmvWrMHq1astX1dXVyM6OhoJCQmdDnZ36XQ6JCcnY/bs2VCp7Pspp7vGaxux8ZU9yKkTMO3aGxxiN1hfjFd5bRP+cGgPABF/unk6Yvs5xqxadznya8vRcKysJ/exqg7NxTNbMnGk2gd/v/sqKBX2W2J3pLHae64MLYfSEOanxl2/me1wpQX2HCvzylBXJE2WOpqhuVJqaioAtPuPJ4qiVf+oOp0OK1asgMFgwL///e9Wf7dq1SrL/8fGxmLo0KGYNGkS0tLSMGHChHavp1aroVar29yuUqns8qK313V7o3+wCiPCfXG6qAYHLlZhyfh+UodkYc/x+uJINnR6EWOj/TE+Rv4dbh3xteWoOFbWk+tYLZ3UH69sP4vcygbsO1+JG0aF2f17OsJYpVysAgBcMzQE7u7Sf/DtiD3GytrrSVrg/dBDDyEzM7PTP7GxsQgPD0dxcXGbx5eWliIsrPMXs06nw/Lly3Hx4kUkJyd3OfMzYcIEqFQqnD17tlfPzRXMHGGc7duVVSJxJH2jucWA9abeSnfPiJE2GCKyOS93N6wwtRH4eH+2tMH0oT1njPVKVw9jy4COSDqzFBwcjODg4C7vFx8fD61Wi0OHDmHKlCkAgIMHD0Kr1WL69OkdPs6cKJ09exa7du1CUFDXMwEZGRnQ6XSIiIiw/om4qOtHhOKdn89j95lS6A2iXaesHcEPJwpQWtOEUF815sXy9UHkjBKnDcB/9l7AvnNlOFtcg6FhHdevOoO8ynqcLqqBQgCuHtL172NXJYvWASNHjsTcuXOxatUqpKSkICUlBatWrcLChQtb7YQbMWIENm/eDABoaWnB0qVLcfjwYWzYsAF6vR5FRUUoKipCc3MzAOD8+fN4/vnncfjwYWRnZ2Pr1q1YtmwZxo8fjxkzZkjyXOVkfLQ//DyMR584+yGUoijio1+yARjfTN3dZPGjQ0TdFB3ohRtGGlcsXGF2aWemcWVg0oBABDhA7amjks07/oYNGxAXF4eEhAQkJCRgzJgx+Oyzz1rdJysrC1qtFgCQl5eHLVu2IC8vD+PGjUNERITlz/79+wEA7u7u2LlzJ+bMmYPhw4fjkUceQUJCAnbs2AGlkn0muuKmVOAa07Ttz06+FJeWU4njecZz4FayYzeRU7vTtMy+KS0f2nrH2kZvazsyjSUus0a23URFl8liNxwABAYGYv369Z3e58ouCDExMV22rY+Ojsbu3bttEp+rmjk8FN8fL8RPp0vweELbflfO4kPTrNLisZEI8mlb3E9EziN+UBCGh/kiq7gGXx7Jxb1XD5I6JLuoadRZDs+dNdL+xexyJpuZJXJM1w4PgSAAGQXVKKhqkDocuyjUNiDppLFFxV0zBkocDRHZmyAIltmlj/dno0XvnP3U9p4tg04vYmCwNwaHeEsdjkNjskS9EuyjxiTT2WjbMqzreSU3nx64BL1BxNSBgRgVKc++SkTUPUvG9UOAlwp5lQ1IctL3NssS3IhQh+ut5GiYLFGvzTXtDDPPvjiTmkYd1qeY2gVcxVklIlfh6a7E7fExAID3dl/osqxDbvQGET+bjjjhElzXmCxRr80ZbfxBS82uQFltUxf3lpfPD+WgprEFg0K8MZtvKEQu5fb4AfBQKXAiX4sD58ulDsemDl2sQEVdMzSeKkyKCZA6HIfHZIl6LSrAC2OiNDCIQPKpts1D5aqpRY91+y4CAO6/ZjAUTt5HiohaC/JRY/mkaADAu3suSByNbf1wogCA8cOuSslUoCscIbKJOaPDATjXUty3RwtQXN2EMD81Fo+PlDocIpLAvVcNgkIwdrk+VWDdOWKOrkVvsLxXLxjD9zZrMFkim5gXa0yW9p8vg7ZB/n1JDAYR7+45DwC456qBULux7xaRK+of5IX5cca6zPdN7wlyd+hiBcpqmxHgpcL0wfI/47IvMFkimxgU4oNhYT7Q6UWn2BW3/VQxLpTWwdfDDf9vCptQErmy314zGADw3fFC5FbUSxxN7313vBAAMDc2nEtwVuIokc0sHtcPAPDN0XyJI+kdURTxzs/nABgLPH095Hd6OhHZTlyUBlcPDYbeIOLfpvcGuTIuwRmTpQVxXIKzFpMlspnF44w/eAculKNQK98GlbuySnAsTwtPlRJ3Tme7ACICfj9rKADgy8N5sp5d2n++HJX1OgR5u2PaoECpw5ENJktkM1EBXpgyMBCiCHybXiB1OD0iiiJeTz4LwDirFOLLo02ICJgUE4irhgSjReazS1+n5QEA5sWFw41LcFbjSJFN3TzeuBS3OS1flk3cdmSW4ES+Fl7uStx3jXOeB0VEPfP7G+Q9u6Rt0Fl2wS2bGC1xNPLCZIlsal5cBNyVCmQV1yCzsEbqcLpFFEW8seMMAOCO6TE8MJeIWpncanZJfjvjvj9egKYWA4aF+WBMlEbqcGSFyRLZlMZThVkjQwEAXx7JlTia7tl+qhgZBdXwdlfiPic9ZZyIeufy7FKu7GaXvjxsXIJbNjGaZ8F1E5Mlsrnlk43Tu18fyUOjTi9xNNYxGES8nmycVbpzRgwCvN0ljoiIHNGVs0vm9ww5OFdSg/TcKigVApaYyiXIekyWyOauGRqCqABPVDe24Ltj8ij03nw0H6eLauCrdsMqzioRUSf+NHc4AGBzej4yCrQSR2Od/5lmlWYOD+XGlR5gskQ2p1QIWDnV2Mhx/cEciaPpWqNOj1e2ZwEAHrx+CPy9OKtERB0bE+WPG8dGQhSBv/94WupwutTQrMcXqcayiFsms7C7J5gskV0snxQNlVLAsdwqnMx37E9e6/ZdRKG2Ef38PXHn9BipwyEiGfhjwnColAL2ni3D3rOlUofTqS3H8qFt0CEqwBPXjwiVOhxZYrJEdhHso8bcWON5SutTLkkcTcfKa5vwjmlXyx/nDIeHimfAEVHX+gd54dapAwAAL249Db3BMVuliKKIj/cb34Nvjx8ApYKF3T3BZInsJnGa8Y1k89F8lNU2SRxN+17fcQa1TS2I7eeHRWPZ+p+IrPfIrKHwVbvhVGE1NqY6ZslBanYlMgur4aFSYPkkLsH1FJMlspvJMQEYG+2PphYDPtmfLXU4bZzI02KDqabqqfmjoOAnLiLqhkBvdzw2exgA4OVtWaisa5Y4orbe222cOb9pfBTrMXuByRLZjSAI+N21xp1lnx64hLqmFokjukxvEPGXb05AFIEl4yIRPzhI6pCISIZujx+AEeG+qKrX4aVtWVKH08qpgmrsPF0ChQCeSNBLTJbIrmaPCsfAYG9oG3T4/JDjTFN/figHx/K08FW74ckFI6UOh4hkyk2pwPOLYwEAG1NzcCy3StqArvCOaVZpflwEBgZ7SxyNvDFZIrtSKgT81vSJ5t3d51HfLP3sUlltE15KMm73fTxhGEJ9PSSOiIjkbMrAQNw0vh9EEXhy8wno9AapQ8L50lr8cNzY5+6B64ZIHI38MVkiu/vNxCgMCPJCWW0zPvolW9JYRFHE09+cRHVjC0ZF+OE2UxE6EVFvrJk/AhpPFTIKqi11QlJ6dXsWDCJww8hQjIr0kzoc2WOyRHanUirw2A3GIsj3dp+HtkEnWSxbjhXgx5NFcFMIeGnpGLgp+SNARL0X6uuBtYtGAQD+ufMssoqkO0g8PbcKW08UQRCAP84ZIVkczoS/KahP3Dg2EsPCfFDd2II3d56VJIaS6kY8820GAOCh64cgth9P3SYi21kyrh9uGBkKnV7EH748huaWvl+OE0UR/zB1Fb95fBSGh/v2eQzOiMkS9QmlQsBTC4yfuj7en40zxX37qUtvEPH4l8egbdAhtp8fHpzJNXwisi1BEPDCTXHQeKpwIl9rOUapL209UYQDF8rh7qbAY7OH9vn3d1ZMlqjPXDssBAmjwqA3iHj22wyIYt91vP3XrnPYe7YMHioFXls+DiouvxGRHYT5eeClpWMAAO/vuYCfThf32feuadThue+Ms+cPXDcYUQFeffa9nR1/Y1CfenrhKKjdFDhwoRxfmk7BtrdfzpXh9R1nAAD/tyQOw8I4LU1E9jNndLjlnMnH/3cMeZX1ffJ9X9mWhZKaJsQEeeH+awf3yfd0FUyWqE9FB3pZOt4+910Gcivs+yaSXVaHhz8/ClEElk+KwtKJUXb9fkREgHF3XGw/P1TW63DvJ4dRa+emvHvOlOKTA8Yz4P66JJbnXNoYkyXqc6uuHoRJAwJQ16zH4/87hhY79SSprGvGXR+noqKuGbH9/PDcoli7fB8iol9TuynxfuIkhPiqcbqoBo98ftRuh+2W1zbh8S+PAQBum9YfVw8Nscv3cWVMlqjPKRUCXls+Dt7uShzKrsALWzNt/j3qm1uw6tPDuFhWh37+nvjwjsnwdOcnLSLqO5H+nvjg9klQuynw0+kSPLnpBAw2Tph0egN+vzEdpTVNGBrqg6fmj7Lp9cmIyRJJon+QF15dPg4A8NEv2fjChid21ze34O6PU3H4UiV8Pdzw0V2TEerHLt1E1PfGRfvj9VvGQSEAXxzOxVPfnLRZwiSKIp759iT2nSuDl7sSb/6/8fxQaCdMlkgyc2PD8egNxq2tazadwJZjBb2+Zp0OuOfTNKRcqICP2g0f3zWZBd1EJKn5cRF4bbkxYfr8UA6e+Pp4r3swiaKIV7efweeHciEIwJsrxmNkBDt124ub1AGQa3vk+qEo0jZiY2ouHvsiHc0thh4XYZ8vrcNrJ5Uoa6yCr9oNn9wzBRP6B9g4YiKi7lsyvh8MorFZ5ZdH8pBbUYdFQT27lsEg4m9bM/GffRcBAM8uHIUbRoXZMFr6NSZLJCmFQsDfboqD3iDiyyN5+MOXx5BRoMWaeSPh7mbdxKcoilh/MAd/++EUGnQCovw98OFdUzijREQO5eYJUfD3UuHh/x5FysVKnMpTImxUGWaNirD6GlX1zfjDl8ewI7MEAPDcotG4w9SmgOyHy3AkOYVCwD9+MwaPzDIuyX30SzYWvLkXu8+Udtq4UhRF7D9XhiX/3o+nvzmJBp0BwzQGfPXbqUyUiMghXT8iDF8/MB2Dgr1RrRNwz6dpuO/Tw12eaqDTG/C/w7m44bXd2JFZAnc3BV5dNpaJUh/hzBI5BIVCwOrZwxAb6Yc1m07gbEkt7vjwEEaE+2JBXAQmDAhAuMYDoggUVDXgyKVKfHe8ABdK6wAAXu5KPHbDEARXZCDIRy3xsyEi6tiIcD98+8A0PPR+MvYWK7D9VDG2nyrGxAEBmBcbjrh+GoT4qqE3iMipqMehixX47lgBCrSNAIAhoT5445ZxPN+yDzFZIoeSMDocUwYG4p87z+LzQzk4XVSD052c3u2hUuCWSdF46Pqh8PdQYOvWjD6MloioZzxUStw80IA/L7sKb+66gG0ZRThyqRJHLlV2+JhgH3esunoQ7pox0OoyBbINJkvkcPy93PHsjaPxyPVDsS2jCD9nleJ0UTUq63UwiCJCfNWIjdTgqqHBmB8XAR+18WWs0+kkjpyIqHuGhPrgndsmoqS6EVuOFSDlQgWyiqtRWaeDSilY3u9uGBWG60eEsjO3RJgskcMK8HbHiin9sWJKf6lDISKyq1A/D9x79SDce/UgqUOhdshmHq+yshKJiYnQaDTQaDRITExEVVVVp49Zu3YtRowYAW9vbwQEBOCGG27AwYMHW92nqakJDz/8MIKDg+Ht7Y1FixYhL69vDnglIiIixyebZGnlypVIT09HUlISkpKSkJ6ejsTExE4fM2zYMLz99ts4ceIE9u3bh5iYGCQkJKC0tNRyn0cffRSbN2/Gxo0bsW/fPtTW1mLhwoXQ6/X2fkpEREQkA7JYhsvMzERSUhJSUlIwdepUAMAHH3yA+Ph4ZGVlYfjw4e0+buXKla2+fu2117Bu3TocP34cs2bNglarxbp16/DZZ5/hhhtuAACsX78e0dHR2LFjB+bMmdPudZuamtDU1GT5urq6GoCxZsaWdTPma7EWxzocL+txrKzHsbIex8p6HCvr2XOsrL2mLJKlAwcOQKPRWBIlAJg2bRo0Gg3279/fYbJ0pebmZrz//vvQaDQYO3YsAODIkSPQ6XRISEiw3C8yMhKxsbHYv39/h8nSiy++iOeee67N7du3b4eXl1d3n16XkpOTbX5NZ8bxsh7HynocK+txrKzHsbKePcaqvr7eqvvJIlkqKipCaGhom9tDQ0NRVFTU6WO///57rFixAvX19YiIiEBycjKCg4Mt13V3d0dAQOsjMcLCwjq97po1a7B69WrL19XV1YiOjkZCQgL8/Gx3No9Op0NycjJmz54NlUpls+s6K46X9ThW1uNYWY9jZT2OlfXsOVbmlaGuSJosrV27tt0ZmiulpqYCAARBaPN3oii2e/uVZs6cifT0dJSVleGDDz7A8uXLcfDgwXaTL2uvq1aroVa3bXyoUqns8qK313WdFcfLehwr63GsrMexsh7Hynr2GCtrrydpsvTQQw9hxYoVnd4nJiYGx48fR3FxcZu/Ky0tRVhY54cHent7Y8iQIRgyZAimTZuGoUOHYt26dVizZg3Cw8PR3NyMysrKVrNLJSUlmD59es+eFBERETkVSZOl4OBgy5JYZ+Lj46HVanHo0CFMmTIFAHDw4EFotdpuJzWiKFqKsydOnAiVSoXk5GQsX74cAFBYWIiTJ0/ipZde6uazISIiImcki9YBI0eOxNy5c7Fq1SqkpKQgJSUFq1atwsKFC1sVd48YMQKbN28GANTV1eHJJ59ESkoKLl26hLS0NNx7773Iy8vDsmXLAAAajQb33HMPHn/8cezcuRNHjx7Fbbfdhri4OMvuOCIiInJtsijwBoANGzbgkUcesexcW7RoEd5+++1W98nKyoJWqwUAKJVKnD59Gp988gnKysoQFBSEyZMnY+/evRg9erTlMa+//jrc3NywfPlyNDQ0YNasWfj444+hVLKlPBEREckoWQoMDMT69es7vY8oipb/9/DwwKZNm7q8roeHB9566y289dZbvY6RiIiInI8sluGIiIiIpMJkiYiIiKgTTJaIiIiIOiGbmiVHZq6VsrYTqLV0Oh3q6+tRXV3NpmVW4HhZj2NlPY6V9ThW1uNYWc+eY2X+vX1lzXN7mCzZQE1NDQAgOjpa4kiIiIiou2pqaqDRaDr8e0HsKp2iLhkMBhQUFMDX17fL41e6w3zmXG5urk3PnHNWHC/rcaysx7GyHsfKehwr69lzrERRRE1NDSIjI6FQdFyZxJklG1AoFIiKirLb9f38/PjD1A0cL+txrKzHsbIex8p6HCvr2WusOptRMmOBNxEREVEnmCwRERERdYLJkgNTq9V49tlnoVarpQ5FFjhe1uNYWY9jZT2OlfU4VtZzhLFigTcRERFRJzizRERERNQJJktEREREnWCyRERERNQJJktEREREnWCyJCOLFi1C//794eHhgYiICCQmJqKgoEDqsBxOdnY27rnnHgwcOBCenp4YPHgwnn32WTQ3N0sdmkN64YUXMH36dHh5ecHf31/qcBzKv//9bwwcOBAeHh6YOHEi9u7dK3VIDmnPnj248cYbERkZCUEQ8M0330gdksN68cUXMXnyZPj6+iI0NBRLlixBVlaW1GE5pHfeeQdjxoyxNKOMj4/Hjz/+KEksTJZkZObMmfjf//6HrKwsfP311zh//jyWLl0qdVgO5/Tp0zAYDHjvvfeQkZGB119/He+++y6efPJJqUNzSM3NzVi2bBl+97vfSR2KQ/niiy/w6KOP4qmnnsLRo0dx9dVXY968ecjJyZE6NIdTV1eHsWPH4u2335Y6FIe3e/duPPjgg0hJSUFycjJaWlqQkJCAuro6qUNzOFFRUfj73/+Ow4cP4/Dhw7j++uuxePFiZGRk9HksbB0gY1u2bMGSJUvQ1NTEU6u78PLLL+Odd97BhQsXpA7FYX388cd49NFHUVVVJXUoDmHq1KmYMGEC3nnnHcttI0eOxJIlS/Diiy9KGJljEwQBmzdvxpIlS6QORRZKS0sRGhqK3bt345prrpE6HIcXGBiIl19+Gffcc0+ffl/OLMlURUUFNmzYgOnTpzNRsoJWq0VgYKDUYZBMNDc348iRI0hISGh1e0JCAvbv3y9RVOSMtFotAPD9qQt6vR4bN25EXV0d4uPj+/z7M1mSmSeeeALe3t4ICgpCTk4Ovv32W6lDcnjnz5/HW2+9hfvvv1/qUEgmysrKoNfrERYW1ur2sLAwFBUVSRQVORtRFLF69WpcddVViI2NlToch3TixAn4+PhArVbj/vvvx+bNmzFq1Kg+j4PJksTWrl0LQRA6/XP48GHL/f/4xz/i6NGj2L59O5RKJW6//Xa4ykpqd8cKAAoKCjB37lwsW7YM9957r0SR972ejBW1JQhCq69FUWxzG1FPPfTQQzh+/Dg+//xzqUNxWMOHD0d6ejpSUlLwu9/9DnfccQdOnTrV53G49fl3pFYeeughrFixotP7xMTEWP4/ODgYwcHBGDZsGEaOHIno6GikpKRIMi3Z17o7VgUFBZg5cybi4+Px/vvv2zk6x9LdsaLWgoODoVQq28wilZSUtJltIuqJhx9+GFu2bMGePXsQFRUldTgOy93dHUOGDAEATJo0CampqfjnP/+J9957r0/jYLIkMXPy0xPmGaWmpiZbhuSwujNW+fn5mDlzJiZOnIiPPvoICoVrTaL25nVFxjfoiRMnIjk5GTfddJPl9uTkZCxevFjCyEjuRFHEww8/jM2bN+Pnn3/GwIEDpQ5JVkRRlOR3HpMlmTh06BAOHTqEq666CgEBAbhw4QKeeeYZDB482CVmlbqjoKAA1113Hfr3749XXnkFpaWllr8LDw+XMDLHlJOTg4qKCuTk5ECv1yM9PR0AMGTIEPj4+EgbnIRWr16NxMRETJo0yTI7mZOTw9q3dtTW1uLcuXOWry9evIj09HQEBgaif//+EkbmeB588EH897//xbfffgtfX1/L7KVGo4Gnp6fE0TmWJ598EvPmzUN0dDRqamqwceNG/Pzzz0hKSur7YESShePHj4szZ84UAwMDRbVaLcbExIj333+/mJeXJ3VoDuejjz4SAbT7h9q644472h2rXbt2SR2a5P71r3+JAwYMEN3d3cUJEyaIu3fvljokh7Rr1652X0N33HGH1KE5nI7emz766COpQ3M4d999t+XnLyQkRJw1a5a4fft2SWJhnyUiIiKiTrhWIQcRERFRNzFZIiIiIuoEkyUiIiKiTjBZIiIiIuoEkyUiIiKiTjBZIiIiIuoEkyUiIiKiTjBZIiIiIuoEkyUicllr167FuHHjpA6DiBwckyUistqdd94JQRDaPR/tgQcegCAIuPPOO/s+MCsIgoBvvvmm1W1/+MMfsHPnTmkCclAxMTF44403pA6DyKEwWSKibomOjsbGjRvR0NBgua2xsRGff/657A5N9fHxQVBQkNRhEJGDY7JERN0yYcIE9O/fH5s2bbLctmnTJkRHR2P8+PGt7puUlISrrroK/v7+CAoKwsKFC3H+/PlW99m/fz/GjRsHDw8PTJo0Cd988w0EQUB6ejoA4Oeff4YgCNi5cycmTZoELy8vTJ8+HVlZWa2u891332HixInw8PDAoEGD8Nxzz6GlpQWAcbYEAG666SYIgmD5ur1luA8//BCjR4+GWq1GREQEHnrooQ7H4s4778SSJUvwt7/9DWFhYfD397d83z/+8Y8IDAxEVFQUPvzww1aPO3HiBK6//np4enoiKCgI9913H2pra3t93fz8fNxyyy0ICAhAUFAQFi9ejOzs7DbXfeWVVxAREYGgoCA8+OCD0Ol0AIDrrrsOly5dwmOPPQZBECAIQofPnciVMFkiom6766678NFHH1m+/vDDD3H33Xe3uV9dXR1Wr16N1NRU7Ny5EwqFAjfddBMMBgMAoKamBjfeeCPi4uKQlpaGv/71r3jiiSfa/Z5PPfUUXn31VRw+fBhubm6tvt+2bdtw22234ZFHHsGpU6fw3nvv4eOPP8YLL7wAAEhNTQUAfPTRRygsLLR8/WvvvPMOHnzwQdx33304ceIEtmzZgiFDhnQ6Fj/99BMKCgqwZ88evPbaa1i7di0WLlyIgIAAHDx4EPfffz/uv/9+5ObmAgDq6+sxd+5cBAQEIDU1FV9++SV27NjRJinryXVnzpwJHx8f7NmzB/v27YOPjw/mzp2L5uZmy3V37dqF8+fPY9euXfjkk0/w8ccf4+OPPwZgTHqjoqLw/PPPo7CwEIWFhZ0+dyKXIRIRWemOO+4QFy9eLJaWlopqtVq8ePGimJ2dLXp4eIilpaXi4sWLxTvuuKPDx5eUlIgAxBMnToiiKIrvvPOOGBQUJDY0NFju88EHH4gAxKNHj4qiKIq7du0SAYg7duyw3OeHH34QAVged/XVV4t/+9vfWn2vzz77TIyIiLB8DUDcvHlzq/s8++yz4tixYy1fR0ZGik899VS3xmPAgAGiXq+33DZ8+HDx6quvtnzd0tIient7i59//rkoiqL4/vvviwEBAWJtbW2r56NQKMSioqIeX3fdunXi8OHDRYPBYLlPU1OT6OnpKW7btq3VdVtaWiz3WbZsmXjLLbdYvh4wYID4+uuvWz0GRK7ATdJMjYhkKTg4GAsWLMAnn3wCURSxYMECBAcHt7nf+fPn8fTTTyMlJQVlZWWWGaWcnBzExsYiKysLY8aMgYeHh+UxU6ZMafd7jhkzxvL/ERERAICSkhL0798fR44cQWpqqmUmCQD0ej0aGxtRX18PLy+vLp9TSUkJCgoKMGvWLOsGwWT06NFQKC5P0oeFhSE2NtbytVKpRFBQEEpKSgAAmZmZGDt2LLy9vS33mTFjBgwGA7KyshAWFtaj6x45cgTnzp2Dr69vq/gaGxtbLX2OHj0aSqXS8nVERAROnDjRredM5GqYLBFRj9x9992WpaN//etf7d7nxhtvRHR0ND744ANERkbCYDAgNjbWsiwkimKbuhhRFNu9lkqlsvy/+THm5MtgMOC5557DzTff3OZxVyZinfH09LTqfp3FZY6tvdvMsbb3nK+8X0+vazAYMHHiRGzYsKHNdUNCQjq9rvkaRNQ+JktE1CNX1sLMmTOnzd+Xl5cjMzMT7733Hq6++moAwL59+1rdZ8SIEdiwYQOampqgVqsBAIcPH+52LBMmTEBWVlan9UUqlQp6vb7Dv/f19UVMTAx27tyJmTNndjsGa40aNQqffPIJ6urqLLNLv/zyCxQKBYYNG9bj606YMAFffPEFQkND4efn1+PruLu7dzpORK6IBd5E1CNKpRKZmZnIzMxstaxjZt6R9f777+PcuXP46aefsHr16lb3WblyJQwGA+677z5kZmZi27ZteOWVVwCgWzuxnnnmGXz66adYu3YtMjIykJmZiS+++AJ/+ctfLPcxJ0JFRUWorKxs9zpr167Fq6++ijfffBNnz55FWloa3nrrLavjsMatt94KDw8P3HHHHTh58iR27dqFhx9+GImJiZYluJ5eNzg4GIsXL8bevXtx8eJF7N69G7///e+Rl5dn9XViYmKwZ88e5Ofno6ysrMfxEDkTJktE1GN+fn4dzmIoFAps3LgRR44cQWxsLB577DG8/PLLbR7/3XffIT09HePGjcNTTz2FZ555BoD1y2eAcWbr+++/R3JyMiZPnoxp06bhtddew4ABAyz3efXVV5GcnNxuiwOzO+64A2+88Qb+/e9/Y/To0Vi4cCHOnj1rdRzW8PLywrZt21BRUYHJkydj6dKlmDVrFt5+++1eX3fPnj3o378/br75ZowcORJ33303GhoaujXT9PzzzyM7OxuDBw9utXxH5MoEsaMCASIiCWzYsAF33XUXtFptj+uIiIhsiTVLRCSpTz/9FIMGDUK/fv1w7NgxPPHEE1i+fDkTJSJyGEyWiEhSRUVFeOaZZ1BUVISIiAgsW7asVQsAIiKpcRmOiIiIqBMs8CYiIiLqBJMlIiIiok4wWSIiIiLqBJMlIiIiok4wWSIiIiLqBJMlIiIiok4wWSIiIiLqBJMlIiIiok78f07rGYIlpbFsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m = np.linspace(-3, 3, 1000)\n", + "plt.ylabel(\"Energy eV\")\n", + "plt.xlabel(\"Magnetic moment\")\n", + "plt.grid()\n", + "plt.plot(m, reg.coef_[1] * m**2 + reg.coef_[2] * m**4);" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "4ada1b24-37c4-48aa-b696-22f8c0e753b7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbfUlEQVR4nO3deVhUdf//8eewC8K4IAiKW+47aiqWt9WtuKZl5YJRmtmmYVqmtql3i3e7mrbcLdriVma7kZRZ7hsg7lu4i7ugIjDMnN8f/uQbgQo6wzDM63FdXhdz5szwmrcjvDyfMzMmwzAMRERERNyUh7MDiIiIiDiTypCIiIi4NZUhERERcWsqQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG35uXsAKWdzWbj8OHDBAYGYjKZnB1HREREisAwDM6ePUt4eDgeHlc+9qMydBWHDx8mIiLC2TFERETkGhw4cIDq1atfcR+VoasIDAwELg4zKCjIyWmuzmKxsHjxYqKjo/H29nZ2nDJDc3UMzdUxNFfH0Fztz5EzzcjIICIiIu/3+JWoDF3FpaWxoKAglylD/v7+BAUF6R+rHWmujqG5Oobm6hiaq/2VxEyLcoqLTqAWERERt6YyJCIiIm5NZUhERETcmsqQiIiIuDWVIREREXFrKkMiIiLi1lSGRERExK2pDImIiIhbUxkSERERt6YyJCIiIm7N5crQu+++S+3atfHz86N169YsW7bsivv/8ccftG7dGj8/P+rUqcP7779fQklFRETEFbhUGZo/fz5PPPEEzz77LElJSXTs2JHu3buzf//+QvdPTU2lR48edOzYkaSkJJ555hni4uL4+uuvSzi5iIiIlFYuVYbeeusthg4dyoMPPkijRo2YMmUKERERvPfee4Xu//7771OjRg2mTJlCo0aNePDBB3nggQd44403Sji5iIiI/JNhGGw+bcJmM5yaw2U+tT4nJ4cNGzYwbty4fNujo6NZuXJlobdZtWoV0dHR+bZ17dqVjz/+GIvFUugn5GZnZ5OdnZ13OSMjA7j4yboWi+V6H4bDXcroClldiebqGJqrY2iujqG52te57Fye+3YzP233JPDPPTx6S1273n9x/p5cpgydOHECq9VKaGhovu2hoaGkpaUVepu0tLRC98/NzeXEiROEhYUVuM3kyZOZNGlSge2LFy/G39//Oh5ByUpISHB2hDJJc3UMzdUxNFfH0Fyv38HzMHOnJyeyTHhgsGf3LhZl7rTr98jMzCzyvi5Thi4xmUz5LhuGUWDb1fYvbPsl48ePZ/To0XmXMzIyiIiIIDo6mqCgoGuNXWIsFgsJCQl06dKl0CNfcm00V8fQXB1Dc3UMzfX6GYbBnLUHmLpuJzm5NqoG+TKgxnke6mv/mV5a2SkKlylDwcHBeHp6FjgKdOzYsQJHfy6pWrVqoft7eXlRuXLlQm/j6+uLr69vge3e3t4u9eR3tbyuQnN1DM3VMTRXx9Bcr01GloVxX29i0aaLv5c7NwrhlTsas2rprw6ZaXHuz2VOoPbx8aF169YFDk8mJCTQoUOHQm8TFRVVYP/FixfTpk0bPZFFRERKSMrBM/SctoxFm9Lw8jDxXM9GfHhfGyr6+zg7GuBCR4YARo8eTWxsLG3atCEqKor//e9/7N+/n0ceeQS4uMR16NAhPvvsMwAeeeQRpk+fzujRoxk2bBirVq3i448/Zu7cuc58GCIiIm7BMAxmrtjL5J+3YbEaVKtQjukxkUTWqOjsaPm4VBnq378/J0+e5D//+Q9HjhyhadOmLFq0iJo1awJw5MiRfO85VLt2bRYtWsSoUaOYMWMG4eHhTJs2jbvuustZD0FERMQtpGdaGLNgI4u3HgWga5NQXrurBWb/0rcy41JlCOCxxx7jscceK/S6WbNmFdjWqVMnEhMTHZxKRERELkncf5rH5yRx6MwFfDw9eKZHQ+7vUOuKL3hyJpcrQyIiIlI62WwGHy3/i9fid5BrM6hRyZ8ZMa1oVt3s7GhXpDIkIiIi1+30+Rye/GojS7YfA6Bn8zAm921GkF/pWxb7J5UhERERuS7r9p4ibm4SR9Kz8PHy4IVejRnUrkapXRb7J5UhERERuSY2m8F7f+zhrYSdWG0GdYIDmB7Tisbhpf9Niv9OZUhERESK7cS5bEZ/uZE/dx4H4I6W4bx0ZzPK+7petXC9xCIiIuJUq/86SdzcJI6dzcbP24NJvZvQr02EyyyL/ZPKkIiIiBSJ1WYwfclupv62E5sBdUPKMyOmFQ2qBjo72nVRGRIREZGrOnY2iyfmJbNyz0kA7m5dnf/0aYK/j+tXCdd/BCIiIuJQy3ed4In5yZw4l005b09euqMpd7Wu7uxYdqMyJCIiIoXKtdqY+tsupv++G8OABqGBzBgUSd0Q114W+yeVIRERESkgLT2LuHlJrE09BcDAthFMuL0Jft6eTk5mfypDIiIiks/SHccY/eVGTp3PIcDHk1f6NqNPy2rOjuUwKkMiIiICgMVq462Enby3dA8AjcOCmB4TSZ0q5Z2czLFUhkRERITDZy7w+NwkNuw7DUBs+5o827NRmVwW+yeVIRERETf327ajPPnVRs5kWgj09eK/dzWnZ/MwZ8cqMSpDIiIibion18Zr8dv5aHkqAM2qmZkeE0nNygFOTlayVIZERETc0IFTmTw+N4nkA2cAGHJTLcZ1b4ivV9lfFvsnlSERERE3E785jacXbCQjK5cgPy9ev6cFXZtUdXYsp1EZEhERcRPZuVYmL9rOrJV7AWgZUYF3BkYSUcnfucGcTGVIRETEDew7eZ4Rc5LYdCgdgGEdazOma0N8vDycnMz5VIZERETKuJ9SjjDu6xTOZudSwd+bN+9pwb8bhTo7VqmhMiQiIlJGZVmsvPTTVr5YvR+ANjUrMm1gJOEVyjk5WemiMiQiIlIG/XX8HMPnJLHtSAYAj91yA6O71MfLU8ti/6QyJCIiUsZ8l3yIZxZu4nyOlcoBPrzVvyWd6ldxdqxSS2VIRESkjLiQY2XSD1uYt+4AAO1qV2LawEhCg/ycnKx0UxkSEREpA3YfO8vw2UnsOHoWkwkev60ecbfV1bJYEagMiYiIuLgFGw7y/LebuWCxElzel6kDWnJT3WBnx3IZKkMiIiIuKjMnl+e+3czCxEMA3FS3Mm/3b0lIoJbFikNlSERExAVtT8tg+OxE9hw/j4cJnuhcn+G31sXTw+TsaC5HZUhERMSFGIbB/HUHmPD9FrJzbYQG+TJ1QCTt61R2djSXpTIkIiLiIs5l5/LsN5v4LvkwAJ3qV+Gtfi2oXN7Xyclcm8qQiIiIC9hyOJ0Rc5JIPXEeTw8TT0U34OF/1cFDy2LXTWVIRESkFDMMgy/W7OfFH7eSk2sjzOzHOwMjaVOrkrOjlRkqQyIiIqVURpaF8V9v4qdNRwD4d8MQ3rinBRUDfJycrGxRGRIRESmFUg6eYcScJPafysTLw8S47g0ZenNtTCYti9mbypCIiEgpYhgGs1bu5ZVF27BYDapVKMf0mEgia1R0drQyS2VIRESklEjPtPD01xv5ZctRAKIbh/L63S0w+3s7OVnZpjIkIiJSCiTtP82IOUkcOnMBb08Tz/RoxOAOtbQsVgJUhkRERJzIMAw+WpbKq/HbybUZ1Kjkz/SYSJpXr+DsaG5DZUhERKQEWG0Ga1NPcexsFiGBfrStXYmMCxae+mojv20/BkDPZmFMvqsZQX5aFitJKkMiIiIOFr/5CJN+2MqR9Ky8bZUDfLAZBqczLfh4efBCr8YMaldDy2JOoDIkIiLiQPGbj/DoF4kY/9h+8nwOACGBvswcciNNws0lH04A8HB2ABERkbLKajOY9MPWAkXo70wmaFg1qMQySUEqQyIiIg6yNvVUvqWxwhzNyGZt6qkSSiSFURkSERFxkGNnr1yEirufOIbKkIiIiIP4eBbt12xIoJ+Dk8iV6ARqERERB1ix+wTPf7f5ivuYgKrmiy+zF+dRGRIREbEjq81g6m+7eGfJLgwDwiv4cfhMFibIdyL1pRfQT7i9MZ4eejm9M2mZTERExE6OZmQR8+Fqpv12sQgNuDGC30bfwvv3tqKqOf9SWFWzH+/d24puTcOclFYu0ZEhERERO/hj53FGzU/m1PkcAnw8eaVvM/q0rAZAt6ZhdGlctcA7UOuIUOmgMiQiInIdcq023kzYyXtL9wDQKCyIGTGR1KlSPt9+nh4mom6o7IyIchUqQyIiItfo8JkLxM1NYv2+0wDc274Gz/VsjJ+3p5OTSXGoDImIiFyDJduPMvrLjZzJtBDo68Xku5rRq3m4s2PJNXCZE6hPnz5NbGwsZrMZs9lMbGwsZ86cueJtFi5cSNeuXQkODsZkMpGcnFwiWUVEpOyyWG28/NNWHpi1njOZFppVM/Nj3M0qQi7MZcpQTEwMycnJxMfHEx8fT3JyMrGxsVe8zfnz57npppv473//W0IpRUSkLDuZBQM/WseHy1IBGNyhFgsejaJm5QAnJ5Pr4RLLZNu2bSM+Pp7Vq1fTrl07AD788EOioqLYsWMHDRo0KPR2l8rS3r17SyqqiIiUUQlbj/F6iicXrOkE+Xnx2t0t6Na0qrNjiR24RBlatWoVZrM5rwgBtG/fHrPZzMqVKy9bhq5FdnY22dnZeZczMjIAsFgsWCwWu30fR7mU0RWyuhLN1TE0V8fQXO0rO9fG64t38umq/YCJZuGBTBvQkuoVy2nG18mRz9Xi3KdLlKG0tDRCQkIKbA8JCSEtLc2u32vy5MlMmjSpwPbFixfj7+9v1+/lSAkJCc6OUCZpro6huTqG5nr9TmTBrJ2eHDh/8f2Abg2z0SviNCmrfifFydnKEkc8VzMzM4u8r1PL0MSJEwstHn+3bt06AEymgm9MZRhGoduvx/jx4xk9enTe5YyMDCIiIoiOjiYoKMiu38sRLBYLCQkJdOnSBW9vb2fHKTM0V8fQXB1Dc7WPnzen8fa3WzmXnUuFct680qchln1JmqsdOfK5emllpyicWoZGjBjBgAEDrrhPrVq1SElJ4ejRowWuO378OKGhoXbN5Ovri6+vb4Ht3t7eLvXkd7W8rkJzdQzN1TE012uTZbHy0k9b+WL1fgDa1KzItIGRVAnwYtG+JM3VARwx0+Lcn1PLUHBwMMHBwVfdLyoqivT0dNauXUvbtm0BWLNmDenp6XTo0MHRMUVExE2knjjP8NmJbD1y8ajCo7fcwOgu9fH29ND5QWWYS5wz1KhRI7p168awYcP44IMPAHjooYfo1atXvpOnGzZsyOTJk7nzzjsBOHXqFPv37+fw4cMA7NixA4CqVatStapeASAiIv/nu+RDPLNwE+dzrFQK8OGtfi24pUHB81Wl7HGZ9xmaPXs2zZo1Izo6mujoaJo3b87nn3+eb58dO3aQnp6ed/n7778nMjKSnj17AjBgwAAiIyN5//33SzS7iIiUXlkWK+O+TmHkvGTO51hpW7sSi+I6qgi5EZc4MgRQqVIlvvjiiyvuYxhGvsuDBw9m8ODBDkwlIiKubPexswyfncSOo2cxmeDxW+sS9+96eHm6zLECsQOXKUMiIiL29PWGgzz37WYuWKwEl/dlSv+W3Fzv6uexStmjMiQiIm4lMyeXF77bwoINBwHocENlpgxoSUign5OTibOoDImIiNvYkXaW4XMS2X3sHB4meKJzfYbfWhdPD/u+Z524FpUhEREp8wzD4Mv1B5jw/RayLDZCAn2ZNjCS9nUqOzualAIqQyIiUqady87luW828W3yxbdZ+Vf9KrzVrwXB5Qu+wa64J5UhEREps7YezmDEnET+OnEeTw8TT0bX55F/3YCHlsXkb1SGRESkzDEMg9lr9vOfH7eSk2sjzOzHtIGR3FirkrOjSSmkMiQiImVKRpaF8Qs38VPKEQBuaxjCm/e0oGKAj5OTSWmlMiQiImXGpoPpjJibyL6TmXh5mBjbrSFDb66tZTG5IpUhERFxeYZh8OnKvbyyaDs5VhvVKpTjnZhIWtWo6Oxo4gJUhkRExKWlZ1p4+uuN/LLlKADRjUN5/e4WmP29nZxMXIXKkIiIuKzkA2cYMSeRg6cv4O1p4pkejRjcoRYmk5bFpOhUhkRExOUYhsHHy1P578/bybUZ1Kjkz/SYSJpXr+DsaOKCVIZERMSlnMnM4amvNvLrtmMA9GhWlf/e1ZwgPy2LybVRGRIREZexYd8pHp+TxOH0LHy8PHi+V2PubVdDy2JyXVSGRESk1LPZDD748y/eWLwDq82gdnAA02MiaRJudnY0KQNUhkREpFQ7eS6b0V9u5I+dxwHo3SKcV/o2o7yvfoWJfeiZJCIipdaav04SNy+JoxnZ+Hp5MKl3E/rfGKFlMbErlSERESl1rDaDd3/fzdu/7sRmwA1VApgxqBUNqwY5O5qUQSpDIiJSqhw/m82o+cks330CgL6tqvFin6YEaFlMHETPLBERKTVW7j5B3LxkTpzLppy3Jy/e0ZS7W1d3diwp41SGRETE6aw2g6m/7eKdJbswDKgfWp4ZMa2oFxro7GjiBlSGRETEqY5mZDFyXhKr/zoFwIAbI5hwexPK+Xg6OZm4C5UhERFxmj93HmfU/GROns8hwMeTV/o2o0/Las6OJW5GZUhEREpcrtXGWwk7eXfpHgAahQUxIyaSOlXKOzmZuCOVIRERKVFH0i8QNzeJdXtPAzCoXQ2e79UYP28ti4lzqAyJiEiJWbL9KE9+uZHTmRbK+3rx37ua0at5uLNjiZtTGRIREYezWG28/ssO/vfnXwA0rRbEjJhW1Kwc4ORkIuBR1B2//fZbrFarI7OIiEgZdPB0Jv0+WJVXhAZ3qMXXj3ZQEZJSo8hl6O6776ZatWqMHTuW7du3OzKTiIiUEYu3pNFj6jKS9p8hyM+L9+9tzcTeTfD10vlBUnoUuQzt37+fxx9/nG+++YYmTZpw8803M3PmTM6fP+/IfCIi4oJycm1M+mELD32+gYysXFpEVOCnuI50a1rV2dFECihyGQoPD+fZZ59l586dLFmyhBtuuIG4uDjCwsJ48MEHWbVqlSNzioiIi9h/MpO731/JzBV7ARjWsTZfPRxFRCV/5wYTuYwil6G/69SpE59++ilHjhzhrbfeYtu2bdx88800adLE3vlERMSFLNp0hJ7TlpFyMJ0K/t58dF8bnu3ZGB+va/p1I1IiruvVZOXLl+fWW29l7969bN++nZ07d9orl4iIuJAsi5WXf9rG56v3AdC6ZkWmDYykWoVyTk4mcnXXVNUzMzP59NNP6dSpE/Xr12f+/PmMHj2avXv32jmeiIiUdqknznPXeyvzitAjnW5g3kPtVYTEZRTryNCKFSv45JNP+Oqrr8jNzaVv3778+uuv3HrrrY7KJyIipdj3Gw8z/usUzudYqRTgw1v9WnBLgxBnxxIpliKXofr167Nnzx4iIyN59dVXiYmJwWw2OzKbiIiUUlkWK5N+2MrctfsBaFu7EtMGRFLV7OfkZCLFV+Qy1K1bN4YOHUqLFi0cmUdEREq53cfOMWJOItvTzmIywYhb6zLy3/Xw8tRJ0uKailyGpk2blvd1bm4uS5cuZc+ePcTExBAYGMjhw4cJCgqifHl94rCISFn19YaDPPftZi5YrASX92VK/5bcXC/Y2bFErkuxX022b98+unXrxv79+8nOzqZLly4EBgby2muvkZWVxfvvv++InCIi4kSZObm88N0WFmw4CECHGyozZUBLQgK1LCaur9jHNEeOHEmbNm04ffo05cr93ysF7rzzTn777Te7hhMREefbefQsfaavYMGGg3iYYFTn+nw+tJ2KkJQZxT4ytHz5clasWIGPj0++7TVr1uTQoUN2CyYiIs5lGAZfrT/IC99vJstiIyTQl6kDIom6obKzo4nYVbHLkM1mK/TT6w8ePEhgYKBdQomIiHOdz87l2W828W3yYQA61gvm7f4tCS7v6+RkIvZX7GWyLl26MGXKlLzLJpOJc+fOMWHCBHr06GHPbCIi4gRbD2dw+zvL+Tb5MJ4eJsZ0bcCnQ9qqCEmZVewjQ2+//Ta33norjRs3Jisri5iYGHbt2kVwcDBz5851REYRESkBhmEwZ+1+Jv2wlZxcG1WD/HgnJpIba1VydjQRhyp2GQoPDyc5OZl58+axYcMGbDYbQ4cOZdCgQflOqBYREddxNsvC+IWb+DHlCAC3NQzhjXtaUCnA5yq3FHF91/RBreXKlWPIkCEMGTLE3nlERKSEbT6UzvA5iew7mYmXh4mnuzXgwZvr4OFhcnY0kRJxXZ9aLyIirsswDD5btY+Xf9pGjtVGtQrleCcmklY1Kjo7mkiJUhkSEXFD6RcsjF2QQvyWNAC6NA7l9bubU8Ffy2LiflSGRETcTPKBM4yYk8jB0xfw9jQxvnsjhtxUC5NJy2LinlSGRETchGEYfLw8lVfjt2OxGkRUKsf0ga1oEVHB2dFEnKrY7zM0ePBg/vzzT0dkERERBzmTmcOwz9bz0k/bsFgNejSryk9xHVWERLiGMnT27Fmio6OpV68er7zyij6CQ0SklNuw7xQ9pi7j123H8PH04MU+TZgR04ogP29nRxMpFYpdhr7++msOHTrEiBEj+Oqrr6hVqxbdu3dnwYIFWCwWR2QE4PTp08TGxmI2mzGbzcTGxnLmzJnL7m+xWBg7dizNmjUjICCA8PBw7rvvPg4fPuywjCIipYnNZvD+H3vo98FqDqdnUauyPwsf60BslM4PEvm7YpchgMqVKzNy5EiSkpJYu3YtdevWJTY2lvDwcEaNGsWuXbvsnZOYmBiSk5OJj48nPj6e5ORkYmNjL7t/ZmYmiYmJPP/88yQmJrJw4UJ27txJ79697Z5NRKS0OWeBh75I4r8/b8dqM+jdIpwf4zrStJrZ2dFESp3rOoH6yJEjLF68mMWLF+Pp6UmPHj3YsmULjRs35rXXXmPUqFF2Cblt2zbi4+NZvXo17dq1A+DDDz8kKiqKHTt20KBBgwK3MZvNJCQk5Nv2zjvv0LZtW/bv30+NGjXskk1EpLRZt/c0r230JN1yAl8vDyb2bsKAGyN0NEjkMopdhiwWC99//z0zZ85k8eLFNG/enFGjRjFo0KC8T62fN28ejz76qN3K0KpVqzCbzXlFCKB9+/aYzWZWrlxZaBkqTHp6OiaTiQoVKlx2n+zsbLKzs/MuZ2RkABcftyOXAe3lUkZXyOpKNFfH0Fzty2YzeP/PVKYu2Y3NMFG7sj/TBrSgYdVAcnNznR3P5en5an+OnGlx7rPYZSgsLAybzcbAgQNZu3YtLVu2LLBP165dr1g4iistLY2QkJAC20NCQkhLSyvSfWRlZTFu3DhiYmIICgq67H6TJ09m0qRJBbYvXrwYf3//ood2sn8eFRP70FwdQ3O9fhk58MVuD3akXzz74cZgG/fUyeCvxGX85eRsZY2er/bniJlmZmYWed9r+tT6e+65Bz8/v8vuU7FiRVJTU696XxMnTiy0ePzdunXrAAo9vGsYRpEO+1osFgYMGIDNZuPdd9+94r7jx49n9OjReZczMjKIiIggOjr6iiWqtLBYLCQkJNClSxe8vfVKEXvRXB1Dc7WPVX+d5KWvNnH8XA7lvD14rnt9yh/frLnamZ6v9ufImV5a2SmKYpehK520XFwjRoxgwIABV9ynVq1apKSkcPTo0QLXHT9+nNDQ0Cve3mKx0K9fP1JTU1myZMlVC42vry++vr4Ftnt7e7vUk9/V8roKzdUxNNdrY7UZTPttF9OW7MIwoH5oeWbEtKJWJT8WLdqsuTqI5mp/jphpce6v2GWob9++hW43mUz4+flRt25dYmJiinQeT3BwMMHBwVfdLyoqivT0dNauXUvbtm0BWLNmDenp6XTo0OGyt7tUhHbt2sXvv/9O5cqVr/q9RERcwbGMLOLmJbH6r1MA9G8TwcTeTSjn46lzWkSKqdgvrQ8KCmLJkiUkJibmLVElJSWxZMkScnNzmT9/Pi1atGDFihV2C9moUSO6devGsGHDWL16NatXr2bYsGH06tUrX+lq2LAh33zzDQC5ubncfffdrF+/ntmzZ2O1WklLSyMtLY2cnBy7ZRMRKWl/7jxO96nLWP3XKfx9PJnSvyWv3t2ccj6ezo4m4pKKfWSoatWqxMTEMH36dDw8LnYpm83GyJEjCQwMZN68eTzyyCOMHTuW5cuX2y3o7NmziYuLIzo6GoDevXszffr0fPvs2LGD9PR0AA4ePMj3338PUOAk799//51bbrnFbtlEREpCrtXG27/u5N2lezAMaFg1kBmDWnFDlfLOjibi0opdhj7++GNWrFiRV4QAPDw8ePzxx+nQoQOvvPIKI0aMoGPHjnYNWqlSJb744osr7mMYRt7XtWrVyndZRMSVHUm/wMi5yazde3FZbFC7GjzfqzF+3joaJHK9il2GcnNz2b59O/Xr18+3ffv27VitVgD8/Pz05l4iInby+/ZjjP4ymdOZFsr7ejG5bzNubxHu7FgiZcY1vZps6NChPPPMM9x4442YTCbWrl3LK6+8wn333QfAH3/8QZMmTeweVkTEnVisNt74ZQcf/HnxnYKaVgti+sBW1AoOcHIykbLlmt5nKDQ0lNdeey3v5e6hoaGMGjWKsWPHAhAdHU23bt3sm1RExI0cOnOBx+ckkrj/DACDO9RifI+G+HppWUzE3opVhnJzc5k9ezZDhw7l2WefzXtDo3++d48+90tE5NolbD3KU19tJP2ChUA/L16/uzndmoY5O5ZImVWsMuTl5cWjjz7Ktm3bgIIlSERErl1Oro3//rydT1ZcfAf/FtXNTI9pRUQl1/koIBFXVOxlsnbt2pGUlETNmjUdkUdExC0dOJXJiDmJbDx48e1BHry5Nk93a4iPV7HfDk5EiqnYZeixxx7jySef5ODBg7Ru3ZqAgPwn8jVv3txu4URE3MHPm47w9NcpnM3KxVzOmzfvaUHnxlf+qCERsZ9il6H+/fsDEBcXl7fNZDLlfWjqpZfXi4jIlWVZrLyyaBufrdoHQKsaFXgnphXVKpRzcjIR91LsMlSUT6MXEZEr23viPMPnJLLl8MUXojzcqQ5PRTfA21PLYiIlrdhlSOcKiYhcn+83HuaZhZs4l51LpQAf3uzXglsbhDg7lojbuqb/gnz++efcdNNNhIeHs2/fxcO7U6ZM4bvvvrNrOBGRsiTLYmX8wk3EzU3iXHYubWtVYlFcRxUhEScrdhl67733GD16ND169ODMmTN55whVqFCBKVOm2DufiEiZsOf4Oe6YsYK5a/djMsHjt9VlzrB2VDX7OTuaiNsrdhl65513+PDDD3n22Wfx9Py/d0Jt06YNmzZtsms4EZGy4Jukg9z+znK2p50luLwPnz3QliejG+Cl84NESoVrOoE6MjKywHZfX1/Onz9vl1AiImXBhRwrL3y3ma82HAQgqk5lpg5oSUiQjgaJlCbFLkO1a9cmOTm5wInUP//8M40bN7ZbMBERV7bz6FmGz05k17FzeJhg5L/rM+K2unh6mJwdTUT+odhlaMyYMQwfPpysrCwMw2Dt2rXMnTuXyZMn89FHHzkio4iIyzAMg682HOSF7zaTZbFRJdCXaQMiibqhsrOjichlFLsMDRkyhNzcXJ5++mkyMzOJiYmhWrVqTJ06lQEDBjgio4iISzifnctz327mm6RDAHSsF8zb/VsSXN7XyclE5EqKXYYAhg0bxrBhwzhx4gQ2m42QEL0sVETc27YjGQyfk8hfx8/jYYInoxvwaKcb8NCymEipd01l6JLg4GB75RARcUmGYTB37QEm/rCFnFwbVYP8mDYwkra1Kzk7mogUUbFf13n06FFiY2MJDw/Hy8sLT0/PfH9ERNzF2SwLcfOSeeabTeTk2ri1QRUWjeyoIiTiYop9ZGjw4MHs37+f559/nrCwMEwmHQIWEfez+VA6I+YksvdkJl4eJsZ0bcCwjnW0LCbigopdhpYvX86yZcto2bKlA+KIiJRuhmHw+ep9vPTjNnKsNqpVKMe0gZG0rlnR2dFE5BoVuwxFRERgGIYjsoiIlGrpFyyM+zqFnzenAdC5UShv3NOcCv4+Tk4mItej2OcMTZkyhXHjxrF3714HxBERKZ02HjhDr3eW8fPmNLw9TbzQqzEf3tdaRUikDCj2kaH+/fuTmZnJDTfcgL+/P97e3vmuP3XqlN3CiYg4m2EYfLJiL//9eRsWq0FEpXJMH9iKFhEVnB1NROyk2GVIn0wvIu7iTGYOT32Vwq/bjgLQvWlV/ntXc8zlvK9ySxFxJcUuQ/fff78jcoiIlCob9p0mbm4Sh85cwMfTg+d6NSK2fU29glakDCr2OUMAe/bs4bnnnmPgwIEcO3YMgPj4eLZs2WLXcCIiJc1mM/jgjz30/2AVh85coFZlfxY+1oH7omqpCImUUcUuQ3/88QfNmjVjzZo1LFy4kHPnzgGQkpLChAkT7B5QRKSknDqfw9BP1zH55+3k2gxubxHOD4/fTNNqZmdHExEHKnYZGjduHC+99BIJCQn4+PzfqyhuvfVWVq1aZddwIiIlZW3qKXpMXcbvO47j6+XBK3c2Y9qAlgT66fwgkbKu2OcMbdq0iTlz5hTYXqVKFU6ePGmXUCIiJcVmM3jvjz28lbATq82gTpUAZsS0olFYkLOjiUgJKXYZqlChAkeOHKF27dr5ticlJVGtWjW7BRMRcbQT57IZNT+ZZbtOANA3shov3tGUAN/r+gxrEXExxV4mi4mJYezYsaSlpWEymbDZbKxYsYKnnnqK++67zxEZRUTsbuWeE3Sfuoxlu07g5+3Ba3c3581+LVSERNxQsf/Vv/zyywwePJhq1aphGAaNGzfGarUSExPDc88954iMIiJ2Y7UZvLNkF9N+24XNgHoh5Xl3UCvqhQY6O5qIOEmxy5C3tzezZ8/mxRdfJDExEZvNRmRkJPXq1XNEPhERuzmWkcUT85NZuefi+Y392lRnUu+mlPPxdHIyEXGmaz4eXKdOHerUqWPPLCIiDrNs13FGzU/mxLkc/H08efnOptwZWd3ZsUSkFNDiuIiUablWG1N+3cWMpbsxDGhYNZDpMa2oG1Le2dFEpJRQGRKRMutI+gVGzk1m7d6LHyAd064GL/RqjJ+3lsVE5P+oDIlImfT7jmOMnp/M6UwL5X29eKVvM3q3CHd2LBEphVSGRKRMsVhtvLF4Bx/88RcATasFMX1gK2oFBzg5mYiUVkUqQykpKUW+w+bNm19zGBGR63HozAUen5NI4v4zANwfVZNnejbC10vLYiJyeUUqQy1btsRkMmEYxlU/tdlqtdolmIhIcSRsPcpTX20k/YKFQD8vXrurOd2bhTk7loi4gCKVodTU1Lyvk5KSeOqppxgzZgxRUVEArFq1ijfffJPXXnvNMSlFRC4jJ9fGq/Hb+Xj5xZ9TLaqbmR7TiohK/k5OJiKuokhlqGbNmnlf33PPPUybNo0ePXrkbWvevDkRERE8//zz3HHHHXYPKSJSmAOnMhkxN4mNB84AMPTm2ozt1hAfr2J/0pCIuLFr+tT6f35IK0Dt2rXZunWrXUKJiFxN/OYjjFmQwtmsXMzlvHnjnhZ0aRzq7Fgi4oKK/d+nRo0a8dJLL5GVlZW3LTs7m5deeolGjRrZNZyIyD9l51qZ8N1mHvkikbNZubSqUYGf4m5WERKRa1bsI0Pvv/8+t99+OxEREbRo0QKAjRs3YjKZ+PHHH+0eUETkkr0nzjNibiKbD2UA8HCnOjwV3QBvTy2Lici1K3YZatu2LampqXzxxRds374dwzDo378/MTExBATofTxExDF+2HiY8Qs3cS47l4r+3rzVryW3NgxxdiwRKQOu6U0X/f39eeihh+ydRUSkgCyLlf/8uJU5a/YD0LZWJaYObEmYuZyTk4lIWXFNx5Y///xzbr75ZsLDw9m3bx8Ab7/9Nt99951dw4mIe9tz/Bx3zFjBnDX7MZlgxK11mTOsnYqQiNhVscvQe++9x+jRo+nevTunT5/Oe5PFihUrMmXKFHvnExE39U3SQW5/Zznb084SXN6Hzx5oy1NdG+Cl84NExM6K/VPlnXfe4cMPP+TZZ5/Fy+v/VtnatGnDpk2b7BpORNzPhRwrTy/YyKj5G8nMsRJVpzKL4jrSsV4VZ0cTkTKq2OcMpaamEhkZWWC7r68v58+ft0soEXFPu46eZficRHYePYfJBCP/XY/Hb6uHp8eVPwZIROR6FPvIUO3atUlOTi6w/eeff6Zx48b2yFSo06dPExsbi9lsxmw2Exsby5kzZ654m4kTJ9KwYUMCAgKoWLEinTt3Zs2aNQ7LKCLX7qv1B7h9+nJ2Hj1HlUBfZj/Yjic611cREhGHK/aRoTFjxjB8+HCysrIwDIO1a9cyd+5cJk+ezEcffeSIjADExMRw8OBB4uPjAXjooYeIjY3lhx9+uOxt6tevz/Tp06lTpw4XLlzg7bffJjo6mt27d1Olig65i5QG2VZ4+utNfJN8BICO9YJ5q19LqgT6OjmZiLiLYpehIUOGkJuby9NPP01mZiYxMTFUq1aNqVOnMmDAAEdkZNu2bcTHx7N69WratWsHwIcffkhUVBQ7duygQYMGhd4uJiYm3+W33nqLjz/+mJSUFP797387JKuIFN2OtLO8ucmToxeO4GGCJ6Mb8GinG/DQ0SARKUHX9D5Dw4YNY9iwYZw4cQKbzUZIiGPf+GzVqlWYzea8IgTQvn17zGYzK1euvGwZ+rucnBz+97//YTab8945uzDZ2dlkZ2fnXc7IuPhOtxaLBYvFch2PomRcyugKWV2J5mpfhmHw5YZDvPjTdrJzTYQG+vJ2v+bcWKsiVmsu//9FqnKN9Hx1DM3V/hw50+LcZ7HL0G233cbChQupUKECwcHBedszMjK44447WLJkSXHv8qrS0tIKLVwhISGkpaVd8bY//vgjAwYMIDMzk7CwMBISEvLl/qfJkyczadKkAtsXL16Mv79/8cM7SUJCgrMjlEma6/XLyoX5f3mQePLiKYuNKti4t+55jm9dxSJ91rNd6fnqGJqr/TlippmZmUXet9hlaOnSpeTk5BTYnpWVxbJly4p1XxMnTiy0ePzdunXrADCZCh42Nwyj0O1/d+utt5KcnMyJEyf48MMP6devH2vWrLns0azx48czevTovMsZGRlEREQQHR1NUFDQ1R6S01ksFhISEujSpQve3t7OjlNmaK72seVwBiPnp7DvVCaeHiaeuK0O1c/toGu05mpPer46huZqf46c6aWVnaIochlKSUnJ+3rr1q35jshYrVbi4+OpVq1akb8xwIgRI656nlGtWrVISUnh6NGjBa47fvw4oaFX/qTqgIAA6tatS926dWnfvj316tXj448/Zvz48YXu7+vri69vwRM3vb29XerJ72p5XYXmem0Mw+CL1ft48cdt5FhtVKtQjmkDI2keXp5Fi3Zorg6iuTqG5mp/jphpce6vyGWoZcuWmEwmTCYTt912W4Hry5UrxzvvvFPkbwwQHBx8xSWrS6KiokhPT2ft2rW0bdsWgDVr1pCenk6HDh2K9T0Nw8h3TpCIOFZGloVxX6ewaNPF/0B1bhTKG/c0p4K/j869EJFSochlKDU1FcMwqFOnDmvXrs330nQfHx9CQkLw9PR0SMhGjRrRrVs3hg0bxgcffABcfGl9r1698p083bBhQyZPnsydd97J+fPnefnll+nduzdhYWGcPHmSd999l4MHD3LPPfc4JKeI5LfxwBlGzE3kwKkLeHuaGNe9EQ/cVOuqy9siIiWpyGWoZs2aANhsNoeFuZLZs2cTFxdHdHQ0AL1792b69On59tmxYwfp6ekAeHp6sn37dj799FNOnDhB5cqVufHGG1m2bBlNmjQp8fwi7sQwDGau2Mvkn7dhsRpUr1iOGTGtaBFRwdnRREQKKPYJ1JMnTyY0NJQHHngg3/ZPPvmE48ePM3bsWLuF+7tKlSrxxRdfXHEfwzDyvvbz82PhwoUOySIil3cmM4cxC1JI2HrxPL9uTary6t3NMZfTORYiUjoV++M4PvjgAxo2bFhge5MmTXj//fftEkpEXFPi/tP0nLachK1H8fH04D99mvDeva1UhESkVCv2kaG0tDTCwsIKbK9SpQpHjhyxSygRcS02m8FHy//itfgd5NoMalb2Z0ZMK5pWMzs7mojIVRW7DEVERLBixQpq166db/uKFSsIDw+3WzARcQ2nzufw1FcbWbL9GAC9mocxuW8zAv10NEhEXEOxy9CDDz7IE088gcViyXuJ/W+//cbTTz/Nk08+afeAIlJ6rdt7iri5SRxJz8LHy4OJtzdhYNsIvVpMRFxKscvQ008/zalTp3jsscfy3onaz8+PsWPHXvaNDEWkbLHZDN77Yw9vJezEajOoUyWAGTGtaBRW+t+lXUTkn4pdhkwmE6+++irPP/8827Zto1y5ctSrV6/Qd20WkbLnxLlsRs1PZtmuEwDcGVmNl+5oSoDvNX3us4iI013zT6/y5ctz44032jOLiJRyq/acZOS8JI6dzcbP24P/9GnKPa2ra1lMRFxakcpQ3759mTVrFkFBQfTt2/eK++q9fUTKHqvNYPqS3Uz9bSc2A+qFlGfGoFbUDw10djQRketWpDJkNpvz/udnNuulsiLu5NjZLJ6Yl8zKPScBuKd1dSb1aYK/j5bFRKRsKNJPs5kzZxb6tYiUbct3neCJ+UmcOJeDv48nL93RlL6tqjs7loiIXem/diJSQK7VxtTfdjH9990YBjSsGsj0mFbUDSnv7GgiInZXpDIUGRlZ5BMkExMTryuQiDhXWnoWcfOSWJt6CoCBbWsw4fbG+Hl7OjmZiIhjFKkM3XHHHXlfZ2Vl8e6779K4cWOioqIAWL16NVu2bOGxxx5zSEgRKRlLdxxj9JcbOXU+hwAfTybf1ZzeLfTO8iJSthWpDE2YMCHv6wcffJC4uDhefPHFAvscOHDAvulEpERYrDbeXLyT9//YA0CT8CCmx7SidnCAk5OJiDhesc8Z+uqrr1i/fn2B7ffeey9t2rThk08+sUswESkZh89c4PG5SWzYdxqA+6Jq8kyPRloWExG3UewyVK5cOZYvX069evXybV++fDl+fn52CyYijvfr1qM8tWAjZzItBPp58dpdzeneLMzZsURESlSxy9ATTzzBo48+yoYNG2jfvj1w8ZyhTz75hBdeeMHuAUXE/nJybbwWv52PlqcC0KK6mXcGtqJGZX8nJxMRKXnFLkPjxo2jTp06TJ06lTlz5gDQqFEjZs2aRb9+/eweUETs68CpTEbMTWLjgTMAPHBTbcZ1b4iPl4dzg4mIOMk1vc9Qv379VHxEXFD85jTGLNjI2axcgvy8eOOeFkQ3qersWCIiTnVNZejMmTMsWLCAv/76i6eeeopKlSqRmJhIaGgo1apVs3dGEblO2blWJi/azqyVewGIrFGBdwZGUr2ilsVERIpdhlJSUujcuTNms5m9e/fy4IMPUqlSJb755hv27dvHZ5995oicInKN9p08z4g5SWw6lA7Aw/+qw1NdG+DtqWUxERGAYv80HD16NIMHD2bXrl35Xj3WvXt3/vzzT7uGE5Hr82PKYXpOW86mQ+lU9Pfmk8FtGN+jkYqQiMjfFPvI0Lp16/jggw8KbK9WrRppaWl2CSUi1yfLYuXFH7cye81+AG6sVZFpAyMJM5dzcjIRkdKn2GXIz8+PjIyMAtt37NhBlSpV7BJKRK7dX8fPMXxOEtuOZGAywWO33MCozvXx0tEgEZFCFfunY58+ffjPf/6DxWIBwGQysX//fsaNG8ddd91l94AiUnTfJh2i1zvL2XYkg8oBPnw6pC1jujZUERIRuYJi/4R84403OH78OCEhIVy4cIFOnTpRt25dAgMDefnllx2RUUSu4kKOlbELUnhifjKZOVba16nEzyM78q/6OlorInI1xV4mCwoKYvny5SxZsoTExERsNhutWrWic+fOjsgnIlex6+hZhs9JZOfRc5hMEHdbPeL+XQ9PD5Ozo4mIuIRilaHc3Fz8/PxITk7mtttu47bbbnNULhEpgq/WH+CF77ZwwWKlSqAvU/u3pEPdYGfHEhFxKcUqQ15eXtSsWROr1eqoPCJSBOezc3n+u80sTDwEwM11g3m7f0uqBPo6OZmIiOsp9jlDzz33HOPHj+fUqVOOyCMiV7E9LYPe05ezMPEQHiZ4Kro+nz3QVkVIROQaFfucoWnTprF7927Cw8OpWbMmAQEB+a5PTEy0WzgR+T+GYTB/3QEmfL+F7FwboUG+TBsQSbs6lZ0dTUTEpRW7DPXp0weTSSdmipSkc9m5PLNwE99vPAzALQ2q8OY9LahcXkeDRESuV7HL0MSJEx0QQ0QuZ8vhdEbMSSL1xHk8PUyM6dqAhzrWwUOvFhMRsYsinzOUmZnJ8OHDqVatGiEhIcTExHDixAlHZhNxa4Zh8Pnqfdz57kpST5wn3OzHlw+355FON6gIiYjYUZGPDE2YMIFZs2YxaNAg/Pz8mDt3Lo8++ihfffWVI/OJuKWMLAvjv97ET5uOANC5UQhv3NOCCv4+Tk4mIlL2FLkMLVy4kI8//pgBAwYAcO+993LTTTdhtVrx9PR0WEARd5Ny8Awj5iSx/1Qm3p4mxnZryNCba+tcPRERBylyGTpw4AAdO3bMu9y2bVu8vLw4fPgwERERDgkn4k4Mw2Dmir1M/nkbFqtB9YrlmB7TipYRFZwdTUSkTCtyGbJarfj45D9E7+XlRW5urt1Dibib9EwLYxZsZPHWowB0a1KVV+9ujrmct5OTiYiUfUUuQ4ZhMHjwYHx9/++lvFlZWTzyyCP53mto4cKF9k0oUsYl7T/NiDlJHDpzAR9PD57t2Yj7ompqWUxEpIQUuQzdf//9Bbbde++9dg0j4k5sNoOPl6fyavx2cm0GNSv7M31gK5pVNzs7moiIWylyGZo5c6Yjc4i4ldPnc3jyq40s2X4MgF7Nw5jctxmBfloWExEpacV+00URuT7r957i8blJHEnPwsfLgwm3NyambQ0ti4mIOInKkEgJsdkM3v9zD28u3onVZlAnOIDpMa1oHB7k7GgiIm5NZUikBJw4l83oLzfy587jANwZWY2X7mhKgK/+CYqIOJt+Eos42Oq/ThI3N4ljZ7Px8/bgP72bck+b6loWExEpJVSGRBzEajOY8ftupvy6E5sBdUPK8+6gVtQPDXR2NBER+RuVIREHOHY2i1Hzk1mx+yQA97SuzqQ+TfD30T85EZHSRj+ZRexsxe4TjJyXzIlz2ZTz9uTlO5vSt1V1Z8cSEZHLUBkSsZNcq41pv+3ind93YxjQsGog02NaUTekvLOjiYjIFagMidjB0YwsHp+bxNrUUwAMbFuDCbc3xs/b08nJRETkalSGRK7T0h3HGP3lRk6dzyHAx5PJdzWnd4twZ8cSEZEiUhkSuUa5VhtvJuzkvaV7AGgcFsSMQa2oHRxwlVuKiEhpojIkcg0On7lA3Nwk1u87DcB9UTV5pkcjLYuJiLggD2cHKKrTp08TGxuL2WzGbDYTGxvLmTNninz7hx9+GJPJxJQpUxyWUdzDb9uO0mPaMtbvO02grxfvDmrFf/o0VRESEXFRLnNkKCYmhoMHDxIfHw/AQw89RGxsLD/88MNVb/vtt9+yZs0awsN1Hodcu1wb/Dd+Bx+v2AdA8+pmpg9sRY3K/k5OJiIi18MlytC2bduIj49n9erVtGvXDoAPP/yQqKgoduzYQYMGDS5720OHDjFixAh++eUXevbsWVKRpYw5ePoC07Z4su/cxSL0wE21Gdu9Ab5eOhokIuLqXKIMrVq1CrPZnFeEANq3b4/ZbGblypWXLUM2m43Y2FjGjBlDkyZNivS9srOzyc7OzruckZEBgMViwWKxXMejKBmXMrpCVleRsPUY477ZTEaWiSA/L17t25TOjULAsGGx2Jwdz6Xp+eoYmqtjaK7258iZFuc+XaIMpaWlERISUmB7SEgIaWlpl73dq6++ipeXF3FxcUX+XpMnT2bSpEkFti9evBh/f9dZDklISHB2BJeXa4Pv9nnwZ9rFU+tqlTe4v34WOanrWZTq5HBljJ6vjqG5Oobman+OmGlmZmaR93VqGZo4cWKhxePv1q1bB1DoJ3wbhnHZT/7esGEDU6dOJTExsVifDj5+/HhGjx6ddzkjI4OIiAiio6MJCgoq8v04i8ViISEhgS5duuDt7e3sOC5r36lMnpifwua0i0cGH4iKoKktlW5dNVd70vPVMTRXx9Bc7c+RM720slMUTi1DI0aMYMCAAVfcp1atWqSkpHD06NEC1x0/fpzQ0NBCb7ds2TKOHTtGjRo18rZZrVaefPJJpkyZwt69ewu9na+vL76+vgW2e3t7u9ST39XyliY/pRxh3NcpnM3OpaK/N2/2a0HHGyqxaFGq5uogmqtjaK6OobnanyNmWpz7c2oZCg4OJjg4+Kr7RUVFkZ6eztq1a2nbti0Aa9asIT09nQ4dOhR6m9jYWDp37pxvW9euXYmNjWXIkCHXH17KnCyLlZd+2soXq/cDcGOtikwbGEmYuZzOERARKcNc4pyhRo0a0a1bN4YNG8YHH3wAXHxpfa9evfKdPN2wYUMmT57MnXfeSeXKlalcuXK++/H29qZq1apXfPWZuKe/jp9j+Jwkth25eFj1sVtuYHSX+nh5usxbcYmIyDVyiTIEMHv2bOLi4oiOjgagd+/eTJ8+Pd8+O3bsID093RnxxIV9l3yIZxZu4nyOlcoBPrzVvyWd6ldxdiwRESkhLlOGKlWqxBdffHHFfQzDuOL1lztPSNzThRwrk37Ywrx1BwBoX6cSUwdEEhrk5+RkIiJSklymDInY0+5jZxk+O4kdR89iMsHjt9Vj5L/r4elR9FceiohI2aAyJG5nwYaDPP/tZi5YrASX92XagJZ0qHv1E/lFRKRsUhkSt5GZk8vz327h68SDANxcN5i3+7ekSmDBt1IQERH3oTIkbmFH2lmGz0lk97FzeJhgdJf6PHpLXS2LiYiIypCUbYZhMH/dASZ8v4XsXBuhQb5MGxBJuzqVr35jERFxCypDUmady87l2W828V3yYQA61a/CW/1aULm8lsVEROT/qAxJmbTlcDqPz0nirxPn8fQw8VR0Ax7+Vx08tCwmIiL/oDIkZYphGHyxZj8v/riVnFwb4WY/3omJpHXNSs6OJiIipZTKkJQZGVkWxi/cxE8pRwDo3CiE1+9uQcUAHycnExGR0kxlSMqETQfTGT4nkf2nMvHyMDGue0OG3lwbk0nLYiIicmUqQ+LSDMPg05V7eWXRdnKsNqpVKMf0mEgia1R0djQREXERKkPistIzLTz99UZ+2XIUgK5NQnntrhaY/b2dnExERFyJypC4pKT9p3l8bhIHT1/Ax9ODZ3s24r6omloWExGRYlMZEpdiGAYfLUvl1fjt5NoMalb2Z/rAVjSrbnZ2NBERcVEqQ+IyTp/P4amvNvLb9mMA9GwexuS+zQjy07KYiIhcO5UhcQnr954ibm4Sh9Oz8PHy4IVejRnUroaWxURE5LqpDEmpZrMZvP/nHt5cvBOrzaBOcADTY1rRODzI2dFERKSMUBmSUuvkuWxGf7mRP3YeB+COluG8dGczyvvqaSsiIvaj3ypSKq356yRx85I4mpGNn7cHk3o3oV+bCC2LiYiI3akMSalitRm8+/tu3v51JzYD6oaUZ0ZMKxpUDXR2NBERKaNUhqTUOH42myfmJ7Fi90kA7m5dnf/0aYK/j56mIiLiOPotI6XCit0nGDkvmRPnsinn7clLdzTlrtbVnR1LRETcgMqQOJXVZjD1t128s2QXhgENQgOZMagVdUPKOzuaiIi4CZUhcZqjGVmMnJfE6r9OATCwbQQTbm+Cn7enk5OJiIg7URkSp/hj53FGz0/m5PkcAnw8eaVvM/q0rObsWCIi4oZUhqRE5VptvJmwk/eW7gGgcVgQ02MiqVNFy2IiIuIcKkNSYg6fuUDc3CTW7zsNQGz7mjzbs5GWxURExKlUhqRELNl+lNFfbuRMpoVAXy/+e1dzejYPc3YsERERlSFxLIvVxuu/7OB/f/4FQLNqZqbHRFKzcoCTk4mIiFykMiQOc/B0JiPmJJF84AwAQ26qxbjuDfH10rKYiIiUHipD4hC/bEljzFcbycjKJcjPi9fvaUHXJlWdHUtERKQAlSGxq5xcG5N/3sbMFXsBaBlRgXcGRhJRyd+5wURERC5DZUjsZv/JTEbMTSTlYDoAD/2rDmO6NsDb08PJyURERC5PZUjsYtGmI4xdkMLZ7Fwq+HvzVr8W3NYw1NmxRERErkplSK5LlsXKyz9t4/PV+wBoU7Mi0wZGEl6hnJOTiYiIFI3KkFyz1BPnGT47ka1HMgB47JYbGN2lPl5aFhMREReiMiTX5LvkQzyzcBPnc6xUDvDhrf4t6VS/irNjiYiIFJvKkBRLlsXKpB+2MHftAQDa1a7EtIGRhAb5OTmZiIjItVEZkiLbfewcw2cnsuPoWUwmePy2esTdVlfLYiIi4tJUhqRIvt5wkOe+3cwFi5Xg8r5MHdCSm+oGOzuWiIjIdVMZkivKzMnlhe+2sGDDQQBuqluZt/u3JCRQy2IiIlI2qAzJZe08epbhsxPZdewcHiYY1bk+j91aF08Pk7OjiYiI2I3KkBRgGAZfrj/AhO+3kGWxERrky9QBkbSvU9nZ0UREROxOZUjyOZedy3PfbOLb5MMAdKpfhbf6taByeV8nJxMREXEMlSHJs/VwBiPmJPLXifN4eph4KroBD/+rDh5aFhMRkTJMZUgwDIM5a/cz6Yet5OTaCDP78c7ASNrUquTsaCIiIg6nMuTmzmZZGLdwEz+lHAHg3w1DeOOeFlQM8HFyMhERkZKhMuTGNh1MZ8TcRPadzMTLw8S47g0ZenNtTCYti4mIiPtQGXJDhmHw6cq9vLJoOzlWG9UqlGN6TCSRNSo6O5qIiEiJUxlyM+kXLIxdkEL8ljQAohuH8vrdLTD7ezs5mYiIiHOoDLmR5ANnGDEnkYOnL+Dj6cEzPRpyf4daWhYTERG3pjLkBgzD4OPlqfz35+3k2gxqVPJnRkwrmlU3OzuaiIiI06kMlXFnMnN46quN/LrtGAA9m4Ux+a5mBPlpWUxERATAw9kBiur06dPExsZiNpsxm83ExsZy5syZK95m8ODBmEymfH/at29fMoFLgQ37TtFj6jJ+3XYMHy8PXrqjKdNjIlWERERE/sZljgzFxMRw8OBB4uPjAXjooYeIjY3lhx9+uOLtunXrxsyZM/Mu+/iU/ffPsRnwv2WpvPXrbqw2g9rBAUyPiaRJuJbFRERE/sklytC2bduIj49n9erVtGvXDoAPP/yQqKgoduzYQYMGDS57W19fX6pWrVpSUZ3u5Pkc/rfdg21ndgHQp2U4L9/ZjPK+LvFXLSIiUuJc4jfkqlWrMJvNeUUIoH379pjNZlauXHnFMrR06VJCQkKoUKECnTp14uWXXyYkJOSy+2dnZ5OdnZ13OSMjAwCLxYLFYrHDo3GctXtPMerLFI6d9cDXy4MJvRpyd6tqmExGqc9e2l2an+ZoX5qrY2iujqG52p8jZ1qc+3SJMpSWllZogQkJCSEtLe2yt+vevTv33HMPNWvWJDU1leeff57bbruNDRs24Otb+KewT548mUmTJhXYvnjxYvz9/a/9QTiQzYCEQyZ+PuCBgYnQcgaD6+cQcDSFn39OcXa8MiUhIcHZEcokzdUxNFfH0FztzxEzzczMLPK+Ti1DEydOLLR4/N26desACn0vHMMwrvgeOf3798/7umnTprRp04aaNWvy008/0bdv30JvM378eEaPHp13OSMjg4iICKKjowkKCrpiVmc4cS6bJxdsYuWBUwDc0aIqHXwP0qtbF7y9daK0vVgsFhISEujSRXO1J83VMTRXx9Bc7c+RM720slMUTi1DI0aMYMCAAVfcp1atWqSkpHD06NEC1x0/fpzQ0NAif7+wsDBq1qzJrl27LruPr69voUeNvL29S92Tf+XuE4ycn8zxs9mU8/bkxTua0qd5KIsWHSyVecsCzdUxNFfH0FwdQ3O1P0fMtDj359QyFBwcTHBw8FX3i4qKIj09nbVr19K2bVsA1qxZQ3p6Oh06dCjy9zt58iQHDhwgLCzsmjOXBlabwdTfdvHOkl0YBjQIDWTGoEjqhgRqLVtERKSYXOJ9hho1akS3bt0YNmwYq1evZvXq1QwbNoxevXrlO3m6YcOGfPPNNwCcO3eOp556ilWrVrF3716WLl3K7bffTnBwMHfeeaezHsp1O5qRxaCPVjPtt4tFaMCNEXw7/CbqhgQ6O5qIiIhLcokTqAFmz55NXFwc0dHRAPTu3Zvp06fn22fHjh2kp6cD4OnpyaZNm/jss884c+YMYWFh3HrrrcyfP5/AQNcsDn/uPM6o+cmcPJ9DgI8nr/RtRp+W1ZwdS0RExKW5TBmqVKkSX3zxxRX3MQwj7+ty5crxyy+/ODpWici12nj71528u3QPhgGNwoKYERNJnSrlnR1NRETE5blMGXJXR9IvEDc3iXV7TwNwb/saPNezMX7enk5OJiIiUjaoDJViv28/xugvkzmdaSHQ14vJdzWjV/NwZ8cSEREpU1SGSiGL1cYbv+zggz//AqBZNTPTYyKpWTnAyclERETKHpWhUubg6Uwen5tE0v4zAAzuUIvxPRri66VlMREREUdQGXISq81gbeopjp3NIiTQj7a1K/HbtqOMWZBC+gULQX5evH5PC7o2cZ8PmRUREXEGlSEniN98hEk/bOVIelbeNn8fTzJzrAC0jKjAOwMjiahUOj8LTUREpCxRGSph8ZuP8OgXiRj/2H6pCHVuFMK7g1rj4+US74cpIiLi8vQbtwRZbQaTfthaoAj93ZbDGXh6XP7DZ0VERMS+VIZK0NrUU/mWxgpzJD2LtamnSiiRiIiIqAyVoGNnr1yEirufiIiIXD+VoRIUEuhn1/1ERETk+qkMlaC2tSsRZvbjcmcEmYAw88WX2YuIiEjJUBkqQZ4eJibc3higQCG6dHnC7Y11ArWIiEgJUhkqYd2ahvHeva2oas6/FFbV7Md797aiW9MwJyUTERFxT3qfISfo1jSMLo2rFngHah0REhERKXkqQ07i6WEi6obKzo4hIiLi9rRMJiIiIm5NZUhERETcmsqQiIiIuDWVIREREXFrKkMiIiLi1lSGRERExK2pDImIiIhbUxkSERERt6YyJCIiIm5N70B9FYZhAJCRkeHkJEVjsVjIzMwkIyMDb29vZ8cpMzRXx9BcHUNzdQzN1f4cOdNLv7cv/R6/EpWhqzh79iwAERERTk4iIiIixXX27FnMZvMV9zEZRalMbsxms3H48GECAwMxmUr/B6lmZGQQERHBgQMHCAoKcnacMkNzdQzN1TE0V8fQXO3PkTM1DIOzZ88SHh6Oh8eVzwrSkaGr8PDwoHr16s6OUWxBQUH6x+oAmqtjaK6Oobk6huZqf46a6dWOCF2iE6hFRETErakMiYiIiFtTGSpjfH19mTBhAr6+vs6OUqZoro6huTqG5uoYmqv9lZaZ6gRqERERcWs6MiQiIiJuTWVIRERE3JrKkIiIiLg1lSERERFxaypDZcDp06eJjY3FbDZjNpuJjY3lzJkzV7zN4MGDMZlM+f60b9++ZAK7iGuZ6989/PDDmEwmpkyZ4rCMruZaZjpx4kQaNmxIQEAAFStWpHPnzqxZs6ZkAruI4s7VYrEwduxYmjVrRkBAAOHh4dx3330cPny45EK7gGt5vi5cuJCuXbsSHByMyWQiOTm5RLKWZu+++y61a9fGz8+P1q1bs2zZsivu/8cff9C6dWv8/PyoU6cO77//vsMzqgyVATExMSQnJxMfH098fDzJycnExsZe9XbdunXjyJEjeX8WLVpUAmldx7XOFeDbb79lzZo1hIeHOzila7mWmdavX5/p06ezadMmli9fTq1atYiOjub48eMllLr0K+5cMzMzSUxM5PnnnycxMZGFCxeyc+dOevfuXYKpS79reb6eP3+em266if/+978llLJ0mz9/Pk888QTPPvssSUlJdOzYke7du7N///5C909NTaVHjx507NiRpKQknnnmGeLi4vj6668dG9QQl7Z161YDMFavXp23bdWqVQZgbN++/bK3u//++40+ffqUQELXdK1zNQzDOHjwoFGtWjVj8+bNRs2aNY23337bwWldw/XM9O/S09MNwPj1118dEdPl2Guua9euNQBj3759jojpcq53rqmpqQZgJCUlOTBl6de2bVvjkUceybetYcOGxrhx4wrd/+mnnzYaNmyYb9vDDz9stG/f3mEZDcMwdGTIxa1atQqz2Uy7du3ytrVv3x6z2czKlSuveNulS5cSEhJC/fr1GTZsGMeOHXN0XJdxrXO12WzExsYyZswYmjRpUhJRXcb1PFcvycnJ4X//+x9ms5kWLVo4KqpLscdcAdLT0zGZTFSoUMEBKV2PvebqznJyctiwYQPR0dH5tkdHR192hqtWrSqwf9euXVm/fj0Wi8VhWVWGXFxaWhohISEFtoeEhJCWlnbZ23Xv3p3Zs2ezZMkS3nzzTdatW8dtt91Gdna2I+O6jGud66uvvoqXlxdxcXGOjOeSrnWmAD/++CPly5fHz8+Pt99+m4SEBIKDgx0V1aVcz1wvycrKYty4ccTExOgDSP8/e8zV3Z04cQKr1UpoaGi+7aGhoZedYVpaWqH75+bmcuLECYdlVRkqpSZOnFjgBOd//lm/fj0AJpOpwO0Nwyh0+yX9+/enZ8+eNG3alNtvv52ff/6ZnTt38tNPPznsMZUGjpzrhg0bmDp1KrNmzbri7MsaRz9XAW699VaSk5NZuXIl3bp1o1+/fmX+SGZJzBUunkw9YMAAbDYb7777rt0fR2lTUnOV//PPeV1thoXtX9h2e/Jy2D3LdRkxYgQDBgy44j61atUiJSWFo0ePFrju+PHjBdr1lYSFhVGzZk127dpV7KyuxJFzXbZsGceOHaNGjRp526xWK08++SRTpkxh796915W9tCqJ52pAQAB169albt26tG/fnnr16vHxxx8zfvz468pempXEXC0WC/369SM1NZUlS5a4xVGhkv7Z6s6Cg4Px9PQscBTo2LFjl51h1apVC93fy8uLypUrOyyrylApFRwcXKRlgKioKNLT01m7di1t27YFYM2aNaSnp9OhQ4cif7+TJ09y4MABwsLCrjmzK3DkXGNjY+ncuXO+bV27diU2NpYhQ4Zcf/hSqqSfq3Dxf4plfUnX0XO9VIR27drF77//7tBfNKWJM56v7srHx4fWrVuTkJDAnXfembc9ISGBPn36FHqbqKgofvjhh3zbFi9eTJs2bfD29nZcWIeeni0lolu3bkbz5s2NVatWGatWrTKaNWtm9OrVK98+DRo0MBYuXGgYhmGcPXvWePLJJ42VK1caqampxu+//25ERUUZ1apVMzIyMpzxEEql4s61MHo1WX7Fnem5c+eM8ePHG6tWrTL27t1rbNiwwRg6dKjh6+trbN682RkPoVQq7lwtFovRu3dvo3r16kZycrJx5MiRvD/Z2dnOeAil0rX8DDh58qSRlJRk/PTTTwZgzJs3z0hKSjKOHDlS0vFLhXnz5hne3t7Gxx9/bGzdutV44oknjICAAGPv3r2GYRjGuHHjjNjY2Lz9//rrL8Pf398YNWqUsXXrVuPjjz82vL29jQULFjg0p8pQGXDy5Elj0KBBRmBgoBEYGGgMGjTIOH36dL59AGPmzJmGYRhGZmamER0dbVSpUsXw9vY2atSoYdx///3G/v37Sz58KVbcuRZGZSi/4s70woULxp133mmEh4cbPj4+RlhYmNG7d29j7dq1JR++FCvuXC+97LuwP7///nuJ5y+truVnwMyZMwud64QJE0o0e2kyY8YMo2bNmoaPj4/RqlUr448//si77v777zc6deqUb/+lS5cakZGRho+Pj1GrVi3jvffec3hGk2H8/zOTRERERNyQXk0mIiIibk1lSERERNyaypCIiIi4NZUhERERcWsqQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG3pjIkIm7hlltu4YknnnB2DBEphVSGRNzE4MGDMZlMPPLIIwWue+yxxzCZTAwePLjkg4lTbNiwAZPJxPLlywu9vmvXrvTu3buEU4k4h8qQiBuJiIhg3rx5XLhwIW9bVlYWc+fOpUaNGk5MVjQ5OTnOjmB3znpMrVu3pkWLFsycObPAdQcOHODXX39l6NChTkgmUvJUhkTcSKtWrahRowYLFy7M27Zw4UIiIiKIjIzMt69hGLz22mvUqVOHcuXK0aJFCxYsWJB3vdVqZejQodSuXZty5crRoEEDpk6dmu8+li5dStu2bQkICKBChQrcdNNN7Nu3D7h4pOqOO+7It/8TTzzBLbfcknf5lltuYcSIEYwePZrg4GC6dOkCwNatW+nRowfly5cnNDSU2NhYTpw4kXe78+fPc99991G+fHnCwsJ48803izSfH374gdatW+Pn50edOnWYNGkSubm5edebTCY++ugj7rzzTvz9/alXrx7ff/99vvu4WrbLPabvv/+eevXqUa5cOW699VY+/fRTTCYTZ86c4fz58wQFBeWb/6W8AQEBnD17ttDHc7W/w6FDh/Lll19y/vz5fLebNWsWVapUoWfPnkWam4irUxkScTNDhgzJdzTgk08+4YEHHiiw33PPPcfMmTN577332LJlC6NGjeLee+/ljz/+AMBms1G9enW+/PJLtm7dygsvvMAzzzzDl19+CUBubi533HEHnTp1IiUlhVWrVvHQQw9hMpmKlffTTz/Fy8uLFStW8MEHH3DkyBE6depEy5YtWb9+PfHx8Rw9epR+/frl3WbMmDH8/vvvfPPNNyxevJilS5eyYcOGK36fX375hXvvvZe4uDi2bt3KBx98wKxZs3j55Zfz7Tdp0iT69etHSkoKPXr0YNCgQZw6dQqgSNkKe0x79+7l7rvv5o477iA5OZmHH36YZ599Nm//gIAABgwYUOAozsyZM7n77rsJDAws9DFd7e9w0KBBWCwWvvrqq7zbGIbBrFmzuP/++/Hy8rrizETKjOv/4HsRcQX333+/0adPH+P48eOGr6+vkZqaauzdu9fw8/Mzjh8/bvTp08e4//77DcMwjHPnzhl+fn7GypUr893H0KFDjYEDB172ezz22GPGXXfdZRiGYZw8edIAjKVLl14xz9+NHDnS6NSpU97lTp06GS1btsy3z/PPP29ER0fn23bgwAEDMHbs2GGcPXvW8PHxMebNm5d3/cmTJ41y5coZI0eOvGz2jh07Gq+88kq+bZ9//rkRFhaWdxkwnnvuubzL586dM0wmk/Hzzz8XKdvlHtPYsWONpk2b5tv27LPPGoBx+vRpwzAMY82aNYanp6dx6NAhwzAM4/jx44a3t/dl51vUv8P+/fsb//rXv/IuL1myxACM7du3F3q/ImWRar+ImwkODqZnz558+umnGIZBz549CQ4OzrfP1q1bycrKylvCuSQnJyffctr777/PRx99xL59+7hw4QI5OTm0bNkSgEqVKjF48GC6du1Kly5d6Ny5M/369SMsLKxYedu0aZPv8oYNG/j9998pX758gX337NmTlyMqKipve6VKlWjQoMEVv8+GDRtYt25dviNBVquVrKwsMjMz8ff3B6B58+Z51wcEBBAYGMixY8eKlK1+/fqFPqYdO3Zw44035tvWtm3bApebNGnCZ599xrhx4/j888+pUaMG//rXvwp9PEX9Oxw6dCjR0dHs3r2bunXr8sknn3DTTTdddV4iZYnKkIgbeuCBBxgxYgQAM2bMKHC9zWYD4KeffqJatWr5rvP19QXgyy+/ZNSoUbz55ptERUURGBjI66+/zpo1a/L2nTlzJnFxccTHxzN//nyee+45EhISaN++PR4eHhiGke++LRZLgSwBAQEFst1+++28+uqrBfYNCwtj165dRRlBoY950qRJ9O3bt8B1fn5+eV97e3vnu85kMuXN62rZLvnnYzIMo8Dy4T9nA/Dggw8yffp0xo0bx8yZMxkyZMhllx2L8ncI0LlzZ2rWrMmsWbN4+umnWbhwIdOnTy/0PkXKKpUhETfUrVu3vFcxde3atcD1jRs3xtfXl/3799OpU6dC72PZsmV06NCBxx57LG/bnj17CuwXGRlJZGQk48ePJyoqijlz5tC+fXuqVKnC5s2b8+2bnJxcoGz8U6tWrfj666+pVatWoee01K1bF29vb1avXp33CrnTp0+zc+fOyz6WS/e7Y8cO6tate8Xvfz3ZLqdhw4YsWrQo37b169cX2O/ee+/l6aefZtq0aWzZsoX777//svdZlL9DuFjmhgwZwkcffUT16tXx8PAocI6TSFmnE6hF3JCnpyfbtm1j27ZteHp6Frg+MDCQp556ilGjRvHpp5+yZ88ekpKSmDFjBp9++ilwsXSsX7+eX375hZ07d/L888+zbt26vPtITU1l/PjxrFq1in379rF48WJ27txJo0aNALjttttYv349n332Gbt27WLChAkFylFhhg8fzqlTpxg4cCBr167lr7/+YvHixTzwwANYrVbKly/P0KFDGTNmDL/99hubN29m8ODBeHhc+cfdCy+8wGeffcbEiRPZsmUL27ZtyzuaVVRXy3Y5Dz/8MNu3b2fs2LHs3LmTL7/8klmzZgHkO/JTsWJF+vbty5gxY4iOjqZ69eqXvc+i/B1eMmTIEA4fPswzzzzDgAEDChy5EinrVIZE3FRQUBBBQUGXvf7FF1/khRdeYPLkyTRq1IiuXbvyww8/ULt2bQAeeeQR+vbtS//+/WnXrh0nT57Md5TI39+f7du3c9ddd1G/fn0eeughRowYwcMPPwxcPCL1/PPP8/TTT3PjjTdy9uxZ7rvvvqvmDg8PZ8WKFVitVrp27UrTpk0ZOXIkZrM5r/C8/vrr/Otf/6J379507tyZm2++mdatW1/xfrt27cqPP/5IQkICN954I+3bt+ett96iZs2aV81UnGyFqV27NgsWLGDhwoU0b96c9957L+/VZH9f0oKL5/jk5OQU+grAf7ra3+ElNWrUoHPnzpw+fbpI9ytS1piMwhamRUTEqV5++WXef/99Dhw4kG/77NmzGTlyJIcPH8bHx8dJ6UTKFp0zJCJSCrz77rvceOONVK5cmRUrVvD666/nneQOkJmZSWpqKpMnT+bhhx9WERKxIy2TiYiUArt27aJPnz40btyYF198kSeffJKJEyfmXf/aa6/RsmVLQkNDGT9+vPOCipRBWiYTERERt6YjQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG3pjIkIiIibk1lSERERNyaypCIiIi4NZUhERERcWv/DxQHkXA1XzooAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.ylabel(\"Predicted energy eV\")\n", + "plt.xlabel(\"Measured energy eV\")\n", + "plt.grid()\n", + "plt.plot(*2 * [[min(y_lst[::2]), 0]])\n", + "plt.scatter(y_lst[::2], np.einsum(\"ni,i->n\", x_lst, reg.coef_)[::2]);" + ] + }, + { + "cell_type": "markdown", + "id": "25769ca1", + "metadata": {}, + "source": [ + "## Monte Carlo simulation for the magnetization curve" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "4f1d238d", + "metadata": {}, + "outputs": [], + "source": [ + "from mamonca import MC" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e028a56b", + "metadata": {}, + "outputs": [], + "source": [ + "large_structure = bulk.repeat(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "eb9de0cc-3d7e-4acb-bbd6-f5fee6e09f7d", + "metadata": {}, + "outputs": [], + "source": [ + "# 14 neighbors, so that the first shell (8 atoms) and second shell (6 atoms) would be included.\n", + "neigh = large_structure.get_neighbors(num_neighbors=14)\n", + "\n", + "mc = MC(len(large_structure))\n", + "for ss, J in zip(neigh.get_shell_matrix()[:1], reg.coef_[:1]):\n", + " mc.set_heisenberg_coeff(J * ss)\n", + "\n", + "mc.set_landau_coeff(reg.coef_[1], 2)\n", + "mc.set_landau_coeff(reg.coef_[2], 4)\n", + "# mc.set_landau_coeff(reg.coef_[3], 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5ba0110c-33d7-47ee-ab53-ad11a9fe93ee", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8a1ef3b18f624fad8dd0f98877829d87", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/19 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.xlabel(\"Temperature K\")\n", + "plt.ylabel(\"Magnetization\")\n", + "plt.grid()\n", + "plt.plot(temperatures, magnetization_lst);" + ] + }, + { + "cell_type": "markdown", + "id": "d90162ce", + "metadata": {}, + "source": [ + "As you can see in the figure above, the transition temperature is fairly different from the experimental Curie temperature (~1,000 K). But I list a few items that probably have played a role, with varying effects.\n", + "\n", + "- Only the first shell was considered\n", + "- Data set consisted of only 3 points\n", + "- Temperature effects (vibration, thermal expansion) not included\n", + "\n", + "Probably by properly taking care of the first three points, we can achive much better results." + ] + }, + { + "cell_type": "markdown", + "id": "de926480", + "metadata": {}, + "source": [ + "# Discussion\n", + "\n", + "In this notebook, I created small boxes with simple magnetic states, but obviously we can also include more complex magnetic states. With the evaluation class that I wrote above, all the $J_{ij}$ parameters would be properly taken into account. Furthermore, it might be also interesting to think about including longitudinal components. There are already some extended models that can do it. Also in the next step, we should also try to take chemical species in consideration. The functionality is already included in the `Neighbors` class.\n", + "\n", + "The fitting was done using linear regression here. If the number of descriptors grows, it might be interesting to look into other regression schemes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87ab0a64", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pyiron", + "language": "python", + "name": "pyiron" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}