Skip to content

Latest commit

 

History

History
173 lines (136 loc) · 8.19 KB

README.md

File metadata and controls

173 lines (136 loc) · 8.19 KB

Build StatusCoverage StatusPyPI version

spacy-lefff : Custom French POS and lemmatizer based on Lefff for spacy

spacy v2.0 extension and pipeline component for adding a French POS and lemmatizer based on Lefff.

On version v2.0.17, spaCy updated French lemmatization

As of version 0.4.0 and above, spacy-lefff only supports python3.6+ and spacy v3

As of version 0.5.0 and above, spacy-lefff only supports python3.8+ and spacy v3

Description

This package allows to bring Lefff lemmatization and part-of-speech tagging to a spaCy custom pipeline. When POS tagging and Lemmatizaion are combined inside a pipeline, it improves your text preprocessing for French compared to the built-in spaCy French processing. It is still a WIP (work in progress), so the matching might not be perfect but if nothing was found by the package, it is still possible to use the default results of spaCy.

Installation

spacy-lefff requires spacy >= v3.0.0.

pip install spacy-lefff

Usage

Import and initialize your nlp spacy object and add the custom component after it parsed the document so you can benefit the POS tags. Be aware to work with UTF-8.

If both POS and lemmatizer are bundled, you need to tell the lemmatizer to use MElt mapping by setting after_melt, else it will use the spaCy part of speech mapping.

default option allows to return the word by default if no lemma was found.

Current mapping used spaCy to Lefff is :

{
    "ADJ": "adj",
    "ADP": "det",
    "ADV": "adv",
    "DET": "det",
    "PRON": "cln",
    "PROPN": "np",
    "NOUN": "nc",
    "VERB": "v",
    "PUNCT": "poncts"
}

MElt Tagset

MElt Tag table:

ADJ 	   adjective
ADJWH	   interrogative adjective
ADV	   adverb
ADVWH	   interrogative adverb
CC	   coordination conjunction
CLO	   object clitic pronoun
CLR	   reflexive clitic pronoun
CLS	   subject clitic pronoun
CS	   subordination conjunction
DET	   determiner
DETWH	   interrogative determiner
ET	   foreign word
I	   interjection
NC	   common noun
NPP	   proper noun
P	   preposition
P+D	   preposition+determiner amalgam
P+PRO	   prepositon+pronoun amalgam
PONCT	   punctuation mark
PREF	   prefix
PRO	   full pronoun
PROREL	   relative pronoun
PROWH	   interrogative pronoun
V	   indicative or conditional verb form
VIMP	   imperative verb form
VINF	   infinitive verb form
VPP	   past participle
VPR	   present participle
VS	   subjunctive verb form

Code snippet

You need to install the French spaCy package before : python -m spacy download fr.

  • An example using the LefffLemmatizer without the POSTagger:
import spacy
from spacy_lefff import LefffLemmatizer
from spacy.language import Language

@Language.factory('french_lemmatizer')
def create_french_lemmatizer(nlp, name):
    return LefffLemmatizer()

nlp = spacy.load('fr_core_news_sm')
nlp.add_pipe('french_lemmatizer', name='lefff')
doc = nlp(u"Apple cherche a acheter une startup anglaise pour 1 milliard de dollard")
for d in doc:
    print(d.text, d.pos_, d._.lefff_lemma, d.tag_, d.lemma_)
Text spaCy POS Lefff Lemma spaCy tag spaCy Lemma
Apple ADJ None ADJ__Number=Sing Apple
cherche NOUN cherche NOUN__Number=Sing chercher
a AUX None AUX__Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin avoir
acheter VERB acheter VERB__VerbForm=Inf acheter
une DET un DET__Definite=Ind Gender=Fem Number=Sing PronType=Art un
startup ADJ None ADJ__Number=Sing startup
anglaise NOUN anglaise NOUN__Gender=Fem Number=Sing anglais
pour ADP None ADP___ pour
1 NUM None NUM__NumType=Card 1
milliard NOUN milliard NOUN__Gender=Masc Number=Sing NumType=Card milliard
de ADP un ADP___ de
dollard NOUN None NOUN__Gender=Masc Number=Sing dollard
  • An example using the POSTagger :
import spacy
from spacy_lefff import LefffLemmatizer, POSTagger
from spacy.language import Language

@Language.factory('french_lemmatizer')
def create_french_lemmatizer(nlp, name):
    return LefffLemmatizer(after_melt=True, default=True)

@Language.factory('melt_tagger')  
def create_melt_tagger(nlp, name):
    return POSTagger()
 
nlp = spacy.load('fr_core_news_sm')
nlp.add_pipe('melt_tagger', after='parser')
nlp.add_pipe('french_lemmatizer', after='melt_tagger')
doc = nlp(u"Apple cherche a acheter une startup anglaise pour 1 milliard de dollard")
for d in doc:
    print(d.text, d.pos_, d._.melt_tagger, d._.lefff_lemma, d.tag_, d.lemma_)
Text spaCy POS MElt Tag Lefff Lemma spaCy tag spaCy Lemma
Apple ADJ NPP apple ADJ__Number=Sing Apple
cherche NOUN V chercher NOUN__Number=Sing chercher
a AUX V avoir AUX__Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin avoir
acheter VERB VINF acheter VERB__VerbForm=Inf acheter
une DET DET un DET__Definite=Ind Gender=Fem Number=Sing PronType=Art un
startup ADJ NC startup ADJ__Number=Sing startup
anglaise NOUN ADJ anglais NOUN__Gender=Fem Number=Sing anglais
pour ADP P pour ADP___ pour
1 NUM DET 1 NUM__NumType=Card 1
milliard NOUN NC milliard NOUN__Gender=Masc Number=Sing NumType=Card milliard
de ADP P de ADP___ de
dollard NOUN NC dollard NOUN__Gender=Masc Number=Sing dollard

We can see that both cherche and startup where not tagged correctly by the default pos tagger. spaCyclassified them as a NOUN and ADJ while MElT classified them as a V and an NC.

Credits

Sagot, B. (2010). The Lefff, a freely available and large-coverage morphological and syntactic lexicon for French. In 7th international conference on Language Resources and Evaluation (LREC 2010).

Benoît Sagot Webpage about LEFFF
http://alpage.inria.fr/~sagot/lefff-en.html

First work of Claude Coulombe to support Lefff with Python : https://github.com/ClaudeCoulombe