-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimulate.py
48 lines (45 loc) · 1.69 KB
/
simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import time
from envs import get_env
from agents import initialize_agent
def simulate(env_name,
method_name,
seed,
logger,
rate_limiter,
config={},
wandb=None):
# Load environment
env = get_env(env_name, config, logger, seed)
env.set_seed(seed)
env.reset(config=config, logger=logger)
# Load agent
agent = initialize_agent(method_name, env, config, rate_limiter, wandb, logger)
# Run experiment
max_episodes = config.run.max_episodes
def loop():
episode = 0
start_time = time.perf_counter()
while episode < max_episodes:
episode += 1
# env.reset()
t0 = time.perf_counter()
test_mse = agent.run()
return {'method_name': method_name,
'env_name': env_name,
'episode_elapsed_time': time.perf_counter() - start_time,
'episode_elapsed_time_per_episode': (time.perf_counter() - start_time) / episode,
'test_mse': test_mse,
'trajectories': config.run.trajectories,
}
ddict = {'method_name': method_name,
'env_name': env_name,
'episode_elapsed_time': time.perf_counter() - start_time,
'episode_elapsed_time_per_episode': (time.perf_counter() - start_time) / episode,
'cumulative_reward': cumulative_reward,
'reward': cumulative_reward / episode,
}
if not config.setup.multi_process_results:
logger.info(f"[{env_name}\t{method_name}\t][Result] {str(ddict)}")
return ddict
result = loop()
return result