-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_utils.py
354 lines (319 loc) · 15.9 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import time
import numpy as np
import torch
import torch.optim as optim
from config import get_config
from overlay import create_env, generate_irregular_data_time_multi, load_expert_irregular_data_time_multi, setup_logger
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from torch.multiprocessing import get_logger
logger = get_logger()
def gaussian_NLL_multi_log_var(y, means, log_variances):
# https://gist.github.com/sergeyprokudin/4a50bf9b75e0559c1fcd2cae860b879e confirms
# Okay up to 6sf
assert means.shape == log_variances.shape and len(y.shape) == 2, "error in shapes"
inv_variances = torch.exp(-log_variances)
return (torch.sum(log_variances, dim=2) + torch.sum(torch.square(y - means) * inv_variances, dim=2)).mean(dim=1)
def gaussian_NLL_multi(y, means, variances):
# https://gist.github.com/sergeyprokudin/4a50bf9b75e0559c1fcd2cae860b879e confirms
# Okay up to 6sf
assert means.shape == variances.shape and len(y.shape) == 2, "error in shapes"
return (torch.log(torch.prod(variances, dim=2)) + torch.sum(torch.square(y - means) / variances, dim=2)).mean(dim=1)
def get_pe_model(state_dim, action_dim, state_mean, action_mean, state_std, action_std, config, discrete):
from w_pe import ProbabilisticEnsemble
return ProbabilisticEnsemble(
state_dim,
action_dim,
hidden_units=config.model_pe_hidden_units,
ensemble_size=config.model_ensemble_size,
encode_obs_time=config.encode_obs_time,
state_mean=state_mean,
state_std=state_std,
action_mean=action_mean,
action_std=action_std,
normalize=config.normalize,
normalize_time=config.normalize_time,
model_activation=config.model_pe_activation,
model_initialization=config.model_pe_initialization,
model_pe_use_pets_log_var=config.model_pe_use_pets_log_var,
discrete=discrete,
)
def gaussian_NLL_multi_no_matrices(y, mean, variance):
# https://gist.github.com/sergeyprokudin/4a50bf9b75e0559c1fcd2cae860b879e confirms
# Okay up to 6sf
assert y.shape == mean.shape == variance.shape and len(y.shape) == 2, "error in shapes"
return (torch.log(torch.prod(variance, dim=1)) + torch.sum(torch.square(y - mean) / variance, dim=1)).mean()
def train_model(
model_name,
train_env_task,
config,
wandb,
retrain=False,
force_retrain=False,
model_seed=0,
start_from_checkpoint=False,
print_settings=True,
evaluate_model_when_trained=False,
):
model_saved_name = f"{model_name}_{train_env_task}_ts-grid-{config.ts_grid}-{config.dt}_{model_seed}_train-with-expert-trajectories-{config.train_with_expert_trajectories}_observation-noise-{config.observation_noise}_friction-{config.friction}_model-{config.model_ensemble_size}-{config.model_pe_hidden_units}-log-var-{config.model_pe_use_pets_log_var}"
if config.end_training_after_seconds is None:
model_saved_name = f"{model_saved_name}_training_for_epochs-{config.training_epochs}"
if config.training_use_only_samples is not None:
model_saved_name = f"{model_saved_name}_samples_used-{config.training_use_only_samples}"
model_saved_name = f"{model_saved_name}.pt"
model_path = f"{config.saved_models_path}{model_saved_name}"
env = create_env(train_env_task, ts_grid=config.ts_grid, dt=config.dt * config.train_dt_multiple, device="cpu")
obs_state = env.reset()
state_dim = obs_state.shape[0]
action_dim = env.action_space.shape[0]
# logger.info(f'[Test logging when training] {model_name}, {train_env_task}, {config}, {wandb}, {delay}')
# s0, a0, sn, ts = generate_irregular_data_time_multi(train_env_task, env, samples_per_dim=2, rand=config.rand_sample, delay=delay)
# if not retrain:
# s0, a0, sn, ts = generate_irregular_data_time_multi(train_env_task, env, samples_per_dim=2, rand=config.rand_sample, delay=delay)
# else:
# s0, a0, sn, ts = generate_irregular_data_time_multi(train_env_task, env, samples_per_dim=15, rand=config.rand_sample, delay=delay)
# s0, a0, sn, ts = generate_irregular_data_time_multi(train_env_task,
# env,
# samples_per_dim=config.train_samples_per_dim,
# rand=config.rand_sample,
# mode=config.ts_grid,
# encode_obs_time=config.encode_obs_time,
# reuse_state_actions_when_sampling_times=config.reuse_state_actions_when_sampling_times,
# observation_noise=config.observation_noise)
# raise ValueError
# state_mean = s0.mean(0).detach().cpu().numpy()
# state_std = s0.std(0).detach().cpu().numpy()
# action_mean = a0.mean().detach().cpu().numpy()
# ACTION_HIGH = env.action_space.high[0]
# action_std = np.array([ACTION_HIGH/2.0])
action_mean = np.array([0] * action_dim)
ACTION_HIGH = env.action_space.high[0]
if train_env_task == "oderl-cartpole":
state_mean = np.array([0.0, 0.0, 0.0, 0.0, 0.0])
state_std = np.array([2.88646771, 11.54556671, 0.70729307, 0.70692035, 17.3199048])
action_std = np.array([ACTION_HIGH / 2.0])
elif train_env_task == "oderl-pendulum":
state_mean = np.array([0.0, 0.0, 0.0])
state_std = np.array([0.70634571, 0.70784512, 2.89072771])
action_std = np.array([ACTION_HIGH / 2.0])
elif train_env_task == "oderl-acrobot":
state_mean = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
state_std = np.array([0.70711024, 0.70710328, 0.7072186, 0.7069949, 2.88642115, 2.88627309])
action_std = np.array([ACTION_HIGH / 2.0])
elif train_env_task == "oderl-cancer":
state_mean = np.array([582.4288, 5.0340])
state_std = np.array([334.3091, 2.8872])
action_std = np.array([ACTION_HIGH / 2.0])
if model_name == "pe":
model = get_pe_model(
state_dim, action_dim, state_mean, action_mean, state_std, action_std, config, discrete=False
).to(device)
elif model_name == "pe-discrete":
model = get_pe_model(
state_dim, action_dim, state_mean, action_mean, state_std, action_std, config, discrete=True
).to(device)
else:
raise NotImplementedError
model_number_of_parameters = sum(p.numel() for p in model.parameters())
logger.info(
f"[{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}][Model] params={model_number_of_parameters}"
)
if not force_retrain:
logger.info(
f"[{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}]Trying to load : {model_path}"
)
if not retrain and os.path.isfile(model_path):
model.load_state_dict(torch.load(model_path))
return model.eval(), {"total_reward": None}
elif not retrain:
raise ValueError
if start_from_checkpoint and os.path.isfile(model_path):
model.load_state_dict(torch.load(model_path))
if print_settings:
logger.info(
f"[{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}][RUN SETTINGS]: {config}"
)
if wandb is not None:
wandb.config.update({f"{model_name}__number_of_parameters": model_number_of_parameters}, allow_val_change=True)
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay)
if config.use_lr_scheduler:
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=config.lr_scheduler_step_size, gamma=config.lr_scheduler_gamma, verbose=True
)
loss_l = []
model.train()
iters = 0
best_loss = float("inf")
waiting = 0
patience = float("inf")
batch_size = config.training_batch_size
train_start_time = time.perf_counter()
elapsed_time = time.perf_counter() - train_start_time
torch.save(model.state_dict(), model_path)
if config.train_with_expert_trajectories and config.training_use_only_samples is not None:
s0, a0, sn, ts = generate_irregular_data_time_multi(
train_env_task, encode_obs_time=config.encode_obs_time, config=config
)
permutation = torch.randperm(s0.size()[0])
permutation = permutation[: config.training_use_only_samples]
for epoch_i in range(config.training_epochs):
iters = 0
nnl_cum_loss = 0
mse_cum_loss = 0
t0 = time.perf_counter()
samples_per_dim = config.train_samples_per_dim
if config.train_with_expert_trajectories:
s0, a0, sn, ts = load_expert_irregular_data_time_multi(
train_env_task, encode_obs_time=config.encode_obs_time, config=config
)
else:
s0, a0, sn, ts = generate_irregular_data_time_multi(
train_env_task,
env,
samples_per_dim=config.train_samples_per_dim,
rand=config.rand_sample,
mode=config.ts_grid,
encode_obs_time=config.encode_obs_time,
reuse_state_actions_when_sampling_times=config.reuse_state_actions_when_sampling_times,
observation_noise=config.observation_noise,
)
s0, a0, sn, ts = s0.to(device), a0.to(device), sn.to(device), ts.to(device)
if config.training_use_only_samples is None:
permutation = torch.randperm(s0.size()[0])
if int(permutation.size()[0] / batch_size) < config.iters_per_log:
config.update({"iters_per_log": int(permutation.size()[0] / batch_size)}, allow_val_change=True)
for iter_i in range(int(permutation.size()[0] / batch_size)):
optimizer.zero_grad()
indices = permutation[iter_i * batch_size : iter_i * batch_size + batch_size]
bs0, ba0, bsn, bts = s0[indices], a0[indices], sn[indices], ts[indices]
bsd = bsn - bs0
if config.model_pe_use_pets_log_var:
means, log_variances = model._forward_ensemble_separate(bs0, ba0, bts)
losses = gaussian_NLL_multi_log_var(bsd, means, log_variances)
losses += 0.01 * (model.max_logvar.sum() - model.min_logvar.sum())
else:
means, variances = model._forward_ensemble_separate(bs0, ba0, bts)
losses = gaussian_NLL_multi(bsd, means, variances)
[loss.backward(retain_graph=True) for loss in losses]
if config.clip_grad_norm_on:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.clip_grad_norm)
optimizer.step()
nnl_cum_loss += losses.mean().item()
iters += 1
# Train loss
mse_losses = torch.square(means - bsd).mean(-1).mean(-1)
mse_loss = mse_losses.mean(-1)
mse_cum_loss += mse_loss.item()
if (permutation.shape[0] == batch_size) or (iter_i % (config.iters_per_log - 1) == 0 and not iter_i == 0):
nnl_track_loss = nnl_cum_loss / iters
mse_track_loss = mse_cum_loss / iters
elapsed_time = time.perf_counter() - train_start_time
if (
config.sweep_mode
and config.end_training_after_seconds is not None
and elapsed_time > config.end_training_after_seconds
):
logger.info(
f"[{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}]Ending training"
)
break
logger.info(
f"[{config.dt}|{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}][epoch={epoch_i+1:04d}|iter={iter_i+1:04d}/{int(permutation.size()[0]/batch_size):04d}|t:{int(elapsed_time)}/{config.end_training_after_seconds if config.sweep_mode else 0}] train_nnl={nnl_track_loss}\t| train_mse={mse_track_loss}\t| s/it={(time.perf_counter() - t0)/config.iters_per_log:.5f}"
)
t0 = time.perf_counter()
if wandb is not None:
wandb.log(
{
"nnl_loss": nnl_track_loss,
"mse_loss": mse_track_loss,
"epoch": epoch_i,
"model_name": model_name,
"env_name": train_env_task,
}
)
iters = 0
# Early stopping procedure
if nnl_track_loss < best_loss:
best_loss = nnl_track_loss
torch.save(model.state_dict(), model_path)
waiting = 0
elif waiting > patience:
break
else:
waiting += 1
nnl_cum_loss = 0
mse_cum_loss = 0
if iter_i % (config.iters_per_evaluation - 1) == 0 and not iter_i == 0:
pass
if (
config.sweep_mode
and config.end_training_after_seconds is not None
and elapsed_time > config.end_training_after_seconds
):
break
if config.use_lr_scheduler:
scheduler.step()
loss_l.append(losses.mean().item())
logger.info(
f"[{train_env_task}\t{model_name}\tsamples={config.training_use_only_samples}][Training Finished] model: {model_name} \t|[epoch={epoch_i+1:04d}|iter={iter_i+1:04d}/{int(permutation.size()[0]/batch_size):04d}] train_nnl={nnl_track_loss}\t| train_mse={mse_track_loss}\t| \t| s/it={(time.perf_counter() - t0)/config.iters_per_log:.5f}"
)
if evaluate_model_when_trained:
total_reward = evaluate_model(model, model_name, train_env_task, wandb, config, intermediate_run=False)
else:
total_reward = None
os.makedirs("saved_models", exist_ok=True)
torch.save(model.state_dict(), model_path)
results = {"train_loss": losses.mean().item(), "best_val_loss": best_loss, "total_reward": total_reward}
return model.eval(), results
def evaluate_model(model, model_name, train_env_task, wandb, config, intermediate_run=False):
if config.sweep_mode and not intermediate_run:
seed_all(0)
from mppi_with_model import mppi_with_model_evaluate_single_step
eval_result = mppi_with_model_evaluate_single_step(
model_name=model_name,
env_name=train_env_task,
roll_outs=config.mppi_roll_outs,
time_steps=config.mppi_time_steps,
lambda_=config.mppi_lambda,
sigma=config.mppi_sigma,
dt=config.dt,
encode_obs_time=config.encode_obs_time,
config=config,
model=model,
# save_video=config.save_video,
save_video=False,
intermediate_run=intermediate_run,
)
total_reward = eval_result["total_reward"]
logger.info(f"[Evaluation Result] Total reward {total_reward}")
if wandb is not None:
wandb.log({"total_reward": total_reward})
return total_reward
if __name__ == "__main__":
import sys
import wandb
defaults = get_config()
defaults["sweep_mode"] = True # Real run settings
defaults["end_training_after_seconds"] = int(1350 * 6.0 * 100.0)
defaults["dt"] = 0.1
wandb.init(config=defaults, project=defaults["wandb_project"] + "CancerTraining") # , mode="disabled")
config = wandb.config
logger = setup_logger(__file__, log_folder=config.log_folder)
from config import seed_all
seed_all(0)
logger.info("Training a model")
model_name = "pe" # 'pe-discrete', 'pe'
train_env_task = "oderl-acrobot" # 'oderl-cartpole', 'oderl-acrobot', 'oderl-pendulum', 'oderl-cancer'
train_model(
model_name,
train_env_task,
config,
wandb,
retrain=True,
force_retrain=True,
model_seed=0,
start_from_checkpoint=True,
print_settings=True,
)
logger.info("")
wandb.finish()