This section describes how to access data from Cassandra table with Spark.
To get a Spark RDD that represents a Cassandra table,
call the cassandraTable
method on the SparkContext
object.
import com.datastax.spark.connector._ //Loads implicit functions
sc.cassandraTable("keyspace name", "table name")
If no explicit type is given to cassandraTable
, the result of this
expression is CassandraRDD[CassandraRow]
. This can be thought of as
a container of CassandraRow
objects. For information on mapping to
other objects please see the documentation's Mapping section
Create this keyspace and table in Cassandra using cqlsh:
CREATE KEYSPACE test WITH REPLICATION = {'class': 'SimpleStrategy', 'replication_factor': 1 };
CREATE TABLE test.words (word text PRIMARY KEY, count int);
Load data into the table:
INSERT INTO test.words (word, count) VALUES ('foo', 20);
INSERT INTO test.words (word, count) VALUES ('bar', 20);
Now you can read that table as RDD
:
val rdd = sc.cassandraTable("test", "words")
// rdd: com.datastax.spark.connector.rdd.CassandraRDD[com.datastax.spark.connector.rdd.reader.CassandraRow] = CassandraRDD[0] at RDD at CassandraRDD.scala:41
rdd.toArray.foreach(println)
// CassandraRow{word: bar, count: 20}
// CassandraRow{word: foo, count: 20}
To create an instance of CassandraRDD
for a table which does not
exist use the emptyCassandraRDD method. emptyCassandraRDD
s do not
perform validation or create partitions so they can be used to represent
absent tables. To create one, either initialize a CassandraRDD
as
usual and then call toEmptyCassandraRDD
method on it or call
emptyCassandraTable
method on Spark context.
// validation is deferred, so it is not triggered during rdd creation
val rdd = sc.cassandraTable[SomeType]("ks", "not_existing_table")
val emptyRDD = rdd.toEmptyCassandraRDD
val emptyRDD2 = sc.emptyCassandraTable[SomeType]("ks", "not_existing_table"))
You can read columns in a Cassandra table using the get methods
of the CassandraRow
object. The get methods access individual column
values by column name or column index. Type conversions are applied on
the fly. Use getOption
variants when you expect to receive Cassandra
null values.
Continuing with the previous example, follow these steps to access individual column values.
Store the first item of the rdd in the firstRow value.
val firstRow = rdd.first
// firstRow: com.datastax.spark.connector.rdd.reader.CassandraRow = CassandraRow{word: bar, count: 20}
Get the number of columns and column names:
firstRow.columnNames // Stream(word, count)
firstRow.size // 2
Use one of getXXX
getters to obtain a column value converted to desired type:
firstRow.getInt("count") // 20
firstRow.getLong("count") // 20L
Or use a generic get to query the table by passing the return type directly:
firstRow.get[Int]("count") // 20
firstRow.get[Long]("count") // 20L
firstRow.get[BigInt]("count") // BigInt(20)
firstRow.get[java.math.BigInteger]("count") // BigInteger(20)
When reading potentially null
data, use the Option
type on the
Scala side to prevent getting a NullPointerException
.
firstRow.getIntOption("count") // Some(20)
firstRow.get[Option[Int]]("count") // Some(20)
You can read collection columns in a Cassandra table using the
getList
, getSet
, getMap
or generic get
methods of the CassandraRow
object. The get
methods access
the collection column and return a corresponding Scala collection.
The generic get
method lets you specify the precise type of the
returned collection.
Assuming you set up the test keyspace earlier, follow these steps to access a Cassandra collection.
In the test keyspace, set up a collection set using cqlsh:
CREATE TABLE test.users (username text PRIMARY KEY, emails SET<text>);
INSERT INTO test.users (username, emails)
VALUES ('someone', {'[email protected]', '[email protected]'});
Then in your application, retrieve the first row:
val row = sc.cassandraTable("test", "users").first
// row: com.datastax.spark.connector.rdd.reader.CassandraRow = CassandraRow{username: someone, emails: [[email protected], [email protected]]}
Query the collection set in Cassandra from Spark:
row.getList[String]("emails") // Vector([email protected], [email protected])
row.get[List[String]]("emails") // List([email protected], [email protected])
row.get[Seq[String]]("emails") // List([email protected], [email protected]) :Seq[String]
row.get[IndexedSeq[String]]("emails") // Vector([email protected], [email protected]) :IndexedSeq[String]
row.get[Set[String]]("emails") // Set([email protected], [email protected])
It is also possible to convert a collection to CQL String
representation:
row.get[String]("emails") // "[[email protected], [email protected]]"
A null
collection is equivalent to an empty collection,
therefore you don't need to use get[Option[...]]
with collections.
UDT column values are represented by com.datastax.spark.connector.UDTValue
type.
The same set of getters is available on UDTValue
as on CassandraRow
. UDT's can
also be mapped to Scala classes see Mapping section
Assume the following table definition:
CREATE TYPE test.address (city text, street text, number int);
CREATE TABLE test.companies (name text PRIMARY KEY, address FROZEN<address>);
You can read the address field of the company in the following way:
val address: UDTValue = row.getUDTValue("address")
val city = address.getString("city")
val street = address.getString("street")
val number = address.getInt("number")
The following table shows recommended Scala types corresponding to Cassandra column types.
Cassandra type | Scala types |
---|---|
ascii , text |
String |
bigint |
Long |
blob |
ByteBuffer , Array[Byte] |
boolean |
Boolean , Int |
counter |
Long |
date |
Int , String (YYYY-MM-DD), java.util.Date , java.sql.Date , org.joda.time.DateTime |
decimal |
BigDecimal , java.math.BigDecimal |
double |
Double |
float |
Float |
inet |
java.net.InetAddress |
int |
Int |
list |
Vector , List , Iterable , Seq , IndexedSeq , java.util.List |
map |
Map , TreeMap , java.util.HashMap |
set |
Set , TreeSet , java.util.HashSet |
smallint |
Short |
text |
String |
time |
Long , Do Not Read this Column as a Date* |
timestamp |
Long , java.util.Date , java.sql.Date , org.joda.time.DateTime |
timeuuid |
java.util.UUID |
tinyint |
Byte |
uuid |
java.util.UUID |
varchar |
String |
varint |
BigInt , java.math.BigInteger |
frozen<tuple<>> |
TupleValue , scala.Product , org.apache.commons.lang3.tuple.Pair , org.apache.commons.lang3.tuple.Triple |
user defined | UDTValue |
Since time
is encoded in nanoseconds from epoch rather than milliseconds there will be Scale
error with an automatic conversion to java.util.Date
Other conversions might work, but may cause loss of precision or may not work for all values. All types are convertible to strings. Converting strings to numbers, dates, addresses or UUIDs is possible as long as the string has proper contents, defined by the CQL3 standard. Maps can be implicitly converted to/from sequences of key-value tuples.
The method repartitionByCassandraReplica
can be used to relocate data
in an RDD to match the replication strategy of a given table and keyspace.
The method will look for partition key information in the given RDD and
then use those values to determine which nodes in the Cluster would be
responsible for that data. You can control the resultant number of partitions
with the parameter partitionsPerHost
.
//CREATE TABLE test.shopping_history ( cust_id INT, date TIMESTAMP, product TEXT, quantity INT, PRIMARY KEY (cust_id, date, product));
case class CustomerID(cust_id: Int) // Defines partition key
val idsOfInterest = sc.parallelize(1 to 1000).map(CustomerID(_))
val repartitioned = idsOfInterest.repartitionByCassandraReplica("test", "shopping_history", 10)
repartitioned.partitions
//res0: Array[org.apache.spark.Partition] = Array(ReplicaPartition(0,Set(/127.0.0.1)), ...)
repartitioned.partitioner
//res1: Option[org.apache.spark.Partitioner] = Some(com.datastax.spark.connector.rdd.partitioner.ReplicaPartitioner@4484d6c2)
scala> repartitioned
//res2: com.datastax.spark.connector.rdd.partitioner.CassandraPartitionedRDD[CustomerID] = CassandraPartitionedRDD[5] at RDD at CassandraPartitionedRDD.scala:12
The connector supports using any RDD as a source of a direct join with a
Cassandra Table through joinWithCassandraTable
. Any RDD which is
writable to a Cassandra table via the saveToCassandra
method can be
used with this procedure as long as the full partition key is specified.
joinWithCassandraTable
utilizes the java drive to execute a single
query for every partition required by the source RDD so no un-needed
data will be requested or serialized. This means a join between any RDD
and a Cassandra Table can be performed without doing a full table scan.
When performed between two Cassandra Tables which share the same
partition key this will not require movement of data between machines.
In all cases this method will use the source RDD's partitioning and
placement for data locality.
joinWithCassandraTable
is not affected by
cassandra.input.split.size_in_mb
since partitions are automatically
inherited from the source RDD. The other input properties have their
normal effects.
//CREATE TABLE test.customer_info ( cust_id INT, name TEXT, address TEXT, PRIMARY KEY (cust_id));
val internalJoin = sc.cassandraTable("test","customer_info").joinWithCassandraTable("test","shopping_history")
internalJoin.toDebugString
//res4: String = (1) CassandraJoinRDD[9] at RDD at CassandraRDD.scala:14 []
internalJoin.collect
internalJoin.collect.foreach(println)
//(CassandraRow{cust_id: 3, address: Poland, name: Jacek},CassandraRow{cust_id: 3, date: 2015-03-09 13:59:25-0700, product: Guacamole, quantity: 2})
//(CassandraRow{cust_id: 0, address: West Coast, name: Russ},CassandraRow{cust_id: 0, date: 2015-03-09 13:58:14-0700, product: Scala is Fun, quantity: 1})
//(CassandraRow{cust_id: 0, address: West Coast, name: Russ},CassandraRow{cust_id: 0, date: 2015-03-09 13:59:04-0700, product: Candy, quantity: 3})
val joinWithRDD = sc.parallelize(0 to 5).filter(_%2==0).map(CustomerID(_)).joinWithCassandraTable("test","customer_info")
joinWithRDD.collect.foreach(println)
//(CustomerID(0),CassandraRow{cust_id: 0, address: West Coast, name: Russ})
//(CustomerID(2),CassandraRow{cust_id: 2, address: Poland, name: Piotr})
The repartitionByCassandraReplica
method can be used prior to calling
joinWithCassandraTable to obtain data locality, such that each spark
partition will only require queries to their local node. This method can
also be used with two Cassandra Tables which have partitioned with
different partition keys.
val oddIds = sc.parallelize(0 to 5).filter(_%2==1).map(CustomerID(_))
val localQueryRDD = oddIds.repartitionByCassandraReplica("test","customer_info").joinWithCassandraTable("test","customer_info")
repartitionRDD.collect.foreach(println)
//(CustomerID(1),CassandraRow{cust_id: 1, address: East Coast, name: Helena})
//(CustomerID(3),CassandraRow{cust_id: 3, address: Poland, name: Jacek})
The result of a joinWithCassandraRDD is compatible with all of the
standard CassandraRDD api options with one additional function, .on
.
Use .on(ColumnSelector)
for specifying which columns to join on.
Since .on
only applies to CassandraJoinRDDs it must immediately follow
the joinWithCassandraTable
call.
Joining on any column or columns in the primary key is supported as long as it can be made into a valid CQL query. This means the entire partition key must be specified and if any clustering key is specified all previous clustering keys must be supplied as well.
val recentOrders = internalJoin.where("date > '2015-03-09'") // Where applied to every partition
val someOrders = internalJoin.limit(1) // Returns at most 1 CQL Row per Spark Partition
val numOrders = internalJoin.count() // Sums the total number of cql Rows
val orderQuantities = internalJoin.select("quantity") // Returns only the amount column as the right side of the join
val specifiedJoin = internalJoin.on(SomeColumns("cust_id")) // Joins on the cust_id column
val emptyJoin = internalJoin.toEmptyCassandraRDD // Makes an EmptyRDD
The following options can be specified in the SparkConf object or as
--conf
flag to spark-submit to adjust the read parameters of a Cassandra table.
In addition you are able to set these parameters on a per table basis
by using implicit vals
. This allows a user to define a set of
parameters in a separate object and import them into a block of
code rather than repeatedly passing the same
ReadConf
object.
object ReadConfigurationOne {
implicit val readConf = ReadConf(100,100)
}
import ReadConfigurationOne._
val rdd = sc.cassandraTable("write_test","collections")
rdd.readConf
//com.datastax.spark.connector.rdd.ReadConf = ReadConf(100,100,LOCAL_ONE,true)
Or you can define them implicitly in the same block as the cassandraTable
call
implicit val anotherConf = ReadConf(200,200)
val rddWithADifferentConf = sc.cassandraTable("write_test","collections")
rddWithADifferentConf.readConf
//com.datastax.spark.connector.rdd.ReadConf = ReadConf(200,200,LOCAL_ONE,true)