You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This is the relevant code I wrote myself, but I can't get the effect shown in figure 4 of the paper.
import numpy as np
import seaborn as sns
from cuml.manifold import TSNE
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("ticks")
##Learned representations from CoST
dataset_path = 'xxxx'
read_data = pd.read_csv(dataset_path+'representations.csv')
##Top 160 are trends representation
trends = np.array(read_data.iloc[:,1:161])
##Last 160 are seasons representation
seasons = np.array(read_data.iloc[:,161:])
##Perform T-SNE on the trends with a fixed season
trend_tsne = TSNE(n_components=2).fit_transform(trends)
seasonal_tsne = TSNE(n_components=2).fit_transform(seasons)
fig, axs = plt.subplots(2, 1, figsize=(8, 12))
##After fixing a certain 160-dimensional seasonal item, draw the two trend item cluster pictures
for i in range(2):
sns.scatterplot(x=trend_tsne[:, 0], y=trend_tsne[:, 1], hue=seasons[:, i+1], ax=axs[0], palette=['yellow', 'purple'])
axs[0].set_title('Fixed Seasonal Item {}'.format(i+1))
axs[0].set_xlabel('TSNE Dimension 1')
axs[0].set_ylabel('TSNE Dimension 2')
##After fixing a certain trend item in the first 160 dimensions, draw the clustering pictures of the three seasonal items
for i in range(3):
sns.scatterplot(x=seasonal_tsne[:, 0], y=seasonal_tsne[:, 1], hue=trends[:, i+1], ax=axs[1], palette=['yellow', 'blue', 'purple'])
axs[1].set_title('Fixed Trend Item {}'.format(i+1))
axs[1].set_xlabel('TSNE Dimension 1')
axs[1].set_ylabel('TSNE Dimension 2')
plt.tight_layout()
plt.show()
Any help will be appreciated.
The text was updated successfully, but these errors were encountered:
hanlaoshi
changed the title
How to visual the trends representation after selecting a single seasonality
How to visualize the trends representation after selecting a single seasonality
Jun 14, 2023
This is the relevant code I wrote myself, but I can't get the effect shown in figure 4 of the paper.
import numpy as np
import seaborn as sns
from cuml.manifold import TSNE
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("ticks")
##Learned representations from CoST
dataset_path = 'xxxx'
read_data = pd.read_csv(dataset_path+'representations.csv')
##Top 160 are trends representation
trends = np.array(read_data.iloc[:,1:161])
##Last 160 are seasons representation
seasons = np.array(read_data.iloc[:,161:])
##Perform T-SNE on the trends with a fixed season
trend_tsne = TSNE(n_components=2).fit_transform(trends)
seasonal_tsne = TSNE(n_components=2).fit_transform(seasons)
fig, axs = plt.subplots(2, 1, figsize=(8, 12))
##After fixing a certain 160-dimensional seasonal item, draw the two trend item cluster pictures
for i in range(2):
sns.scatterplot(x=trend_tsne[:, 0], y=trend_tsne[:, 1], hue=seasons[:, i+1], ax=axs[0], palette=['yellow', 'purple'])
axs[0].set_title('Fixed Seasonal Item {}'.format(i+1))
axs[0].set_xlabel('TSNE Dimension 1')
axs[0].set_ylabel('TSNE Dimension 2')
##After fixing a certain trend item in the first 160 dimensions, draw the clustering pictures of the three seasonal items
for i in range(3):
sns.scatterplot(x=seasonal_tsne[:, 0], y=seasonal_tsne[:, 1], hue=trends[:, i+1], ax=axs[1], palette=['yellow', 'blue', 'purple'])
axs[1].set_title('Fixed Trend Item {}'.format(i+1))
axs[1].set_xlabel('TSNE Dimension 1')
axs[1].set_ylabel('TSNE Dimension 2')
plt.tight_layout()
plt.show()
Any help will be appreciated.
The text was updated successfully, but these errors were encountered: