forked from llmware-ai/llmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext2sql-multistep-example-3.py
115 lines (71 loc) · 3.79 KB
/
text2sql-multistep-example-3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
""" This example shows a multi-step SQL query use case - this is an 'innovation scenario' and should be viewed
as a good starting recipe for building your own more complex workflows involving text2sql queries.
The example shows the following steps:
1. Generating a SQL table from a sample CSV file included with the slim-sql-tool install.
2. 'Two-step' query (starting on line 133) in which a customer name is pulled from a text using NER, and then
the name is 'dynamically' added to a natural language string, which is then converted using text-to-sql
and querying the database.
3. All work performed on an integrated 'llmware-sqlite-experimental.db' that can be deleted safely anytime
as part of experimentation lifecycle.
"""
import os
from llmware.agents import SQLTables, LLMfx
from llmware.models import ModelCatalog
from llmware.configs import LLMWareConfig
llmware_path = LLMWareConfig().get_llmware_path()
def sql_two_step_query_example(table_name="customers1",create_new_table=False):
""" This is the end-to-end execution script. """
# create table if needed to set up
if create_new_table:
sql_tool_repo_path = os.path.join(LLMWareConfig().get_model_repo_path(), "slim-sql-tool")
if not os.path.exists(sql_tool_repo_path):
ModelCatalog().load_model("llmware/slim-sql-tool")
files = os.listdir(sql_tool_repo_path)
csv_file = "customer_table.csv"
if csv_file in files:
sql_db = SQLTables(experimental=True)
sql_db.create_new_table_from_csv(sql_tool_repo_path, csv_file, table_name=table_name)
print("update: successfully created new db table")
else:
print("something has gone wrong - could not find customer_table.csv with slim-sql-tool file package")
# query starts here
agent = LLMfx()
agent.load_tool("sql")
agent.load_tool("ner")
# Multi-step example - extract NER -> create natural language query -> convert SQL -> lookup
text = ("This is Susan Soinsin calling - I am really upset about the poor customer service, "
"and would like to cancel my service.")
# Step 1 - extract the customer name using NER
response = agent.ner(text=text)
customer_name = "No Customer"
# please note: this is just a demo recipe - any real life scenario would require significant preprocessing
# and error checking. :)
if "llm_response" in response:
if "people" in response["llm_response"]:
people = response["llm_response"]["people"]
if len(people) > 0:
customer_name = people[0]
print("update: ner response - identified the following people names - ", customer_name, response)
# Step 2 - use the customer name found in the NER analysis to construct a natural language query
query = f"Is {customer_name} a vip customer?"
print("update: dynamically created query: ", query)
response = agent.query_db(query, table=table_name)
print("update: response: ", response)
for x in range(0,len(agent.research_list)):
print("research: ", x, agent.research_list[x])
return 0
def delete_table(table_name):
""" Start fresh in testing - delete table in experimental local SQLite DB """
sql_db = SQLTables(experimental=True)
sql_db.delete_table(table_name,confirm_delete=True)
return True
def delete_db():
""" Start fresh in testing - deletes SQLite DB and starts over. """
sql_db = SQLTables(experimental=True)
sql_db.delete_experimental_db(confirm_delete=True)
return True
if __name__ == "__main__":
# second - run an end-to-end test
sql_two_step_query_example (table_name="customer1",create_new_table=True)
# third - delete and start fresh for further testing
delete_table("customer1")