-
Notifications
You must be signed in to change notification settings - Fork 2
/
multi_label.py
137 lines (117 loc) · 4.23 KB
/
multi_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import time
import numpy as np
import tensorflow as tf
from cv2 import *
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def capture_image():
cam = VideoCapture(0)
s, img = cam.read()
if s:
namedWindow("Taking Image...")
imshow("Taking Image...",img)
waitKey(0)
imwrite("/tmp/image.jpg",img)
destroyWindow("cam-test")
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
input_mean=0, input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels = 3,
name='png_reader')
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
name='gif_reader'))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
else:
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0);
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
if __name__ == "__main__":
capture_image()
file_name = "/tmp/image.jpg"
model_file = "tf_files/retrained_graph.pb"
label_file = "tf_files/retrained_labels.txt"
input_height = 299
input_width = 299
input_mean = 0
input_std = 255
input_layer = 'Mul'
output_layer = "final_result"
parser = argparse.ArgumentParser()
parser.add_argument("--image", help="image to be processed")
parser.add_argument("--graph", help="graph/model to be executed")
parser.add_argument("--labels", help="name of file containing labels")
parser.add_argument("--input_height", type=int, help="input height")
parser.add_argument("--input_width", type=int, help="input width")
parser.add_argument("--input_mean", type=int, help="input mean")
parser.add_argument("--input_std", type=int, help="input std")
parser.add_argument("--input_layer", help="name of input layer")
parser.add_argument("--output_layer", help="name of output layer")
args = parser.parse_args()
if args.graph:
model_file = args.graph
if args.image:
file_name = args.image
if args.labels:
label_file = args.labels
if args.input_height:
input_height = args.input_height
if args.input_width:
input_width = args.input_width
if args.input_mean:
input_mean = args.input_mean
if args.input_std:
input_std = args.input_std
if args.input_layer:
input_layer = args.input_layer
if args.output_layer:
output_layer = args.output_layer
graph = load_graph(model_file)
t = read_tensor_from_image_file(file_name,
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name);
output_operation = graph.get_operation_by_name(output_name);
with tf.Session(graph=graph) as sess:
start = time.time()
results = sess.run(output_operation.outputs[0],
{input_operation.outputs[0]: t})
end=time.time()
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(label_file)
k = 0
for i in results[:]:
print (labels[k], results[k])
k += 1