-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
117 lines (100 loc) · 3.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import pickle
import string
from pathlib import Path
from typing import Any
import jax
import numpy as np
import shortuuid
from absl import app, flags, logging
from ml_collections import config_dict
from ml_collections.config_flags import config_flags
import stde.equations as eqns
from stde.config import Config
from stde.train import train
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(name="config", default="stde/config.py")
flags.DEFINE_bool("wandb", False, "whether to use wandb")
flags.DEFINE_bool("save", False, "whether to save trained weights")
flags.DEFINE_integer("n_runs", 5, "how many random seeds to run")
flags.DEFINE_bool("get_mem", False, "whether to measure GPU memory usage")
if 'log_dir' in flags.FLAGS:
default_log_dir = './_logs'
flags.FLAGS.log_dir = default_log_dir
Path(default_log_dir).mkdir(parents=True, exist_ok=True)
if 'alsologtostderr' in flags.FLAGS:
flags.FLAGS.alsologtostderr = True
def main(_: Any) -> None:
logging.get_absl_handler().use_absl_log_file('absl_logging', FLAGS.log_dir)
logging.get_absl_handler().setFormatter(
logging.PythonFormatter("%(message)s")
)
cfg: Config = FLAGS.config
print(cfg)
# inject random coeffs
if getattr(eqns, cfg.eqn_cfg.name).random_coeff:
cfg.eqn_cfg.coeffs = np.random.randn(1, cfg.eqn_cfg.dim)
uuid = shortuuid.ShortUUID(alphabet=string.ascii_lowercase + string.digits
).random(8)
if FLAGS.save:
with cfg.unlocked():
cfg.uuid = uuid
l1_losses, l2_losses, iter_per_s_list = [], [], []
run_data = []
for i in range(FLAGS.n_runs):
cfg.rng_seed = i
np.random.seed(i)
losses, l1s, l2s, iter_per_s, peak_gpu_mem = train(
cfg, FLAGS.wandb, i, FLAGS.get_mem
)
l1_losses.append(min(l1s))
l2_losses.append(min(l2s))
iter_per_s_list.append(iter_per_s)
run_data.append(
dict(
losses=losses,
l1s=l1s,
l2s=l2s,
iter_per_s=iter_per_s,
peak_gpu_mem=peak_gpu_mem
)
)
l1_losses = np.array(l1_losses)
l2_losses = np.array(l2_losses)
iter_per_s = np.array(iter_per_s_list)
if FLAGS.get_mem:
result_path = Path("_mem_results/")
else:
result_path = Path("_results/")
result_path.mkdir(parents=True, exist_ok=True)
result_file_name = "-".join(
[
cfg.eqn_cfg.name,
f"{cfg.eqn_cfg.dim}D",
f"R{cfg.eqn_cfg.rand_batch_size}",
f"B{cfg.model_cfg.block_size}",
uuid,
]
)
with (result_path / result_file_name).open("w") as f:
l1_str = f"l1: {l1_losses.mean():.2E}±{l1_losses.std():.2E}\n"
print(l1_str)
f.write(l1_str)
l2_str = f"l2: {l2_losses.mean():.2E}±{l2_losses.std():.2E}\n"
print(l2_str)
f.write(l2_str)
speed_str = f"mean speed: {iter_per_s.mean():.2f}it/s\n"
print(speed_str)
f.write(speed_str)
mem_str = f"peak gpu mem: {peak_gpu_mem:.2f}MBs\n"
print(mem_str)
f.write(mem_str)
f.write(f"\n n_runs: {FLAGS.n_runs}\n")
f.write("\n---------------CONFIG---------------\n")
if hasattr(cfg.eqn_cfg, "coeffs"):
del cfg.eqn_cfg.coeffs
f.write(str(cfg))
with (result_path / result_file_name).with_suffix(".pkl").open("wb") as f:
pickle.dump(run_data, f)
if __name__ == "__main__":
app.run(main)