-
Notifications
You must be signed in to change notification settings - Fork 2
/
pdos_loss.py
executable file
·418 lines (366 loc) · 18.6 KB
/
pdos_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import io
import time
import argparse
import json
import random
import copy
import logging
import numpy as np
from typing import Optional, Dict, Sequence
from io_utils import read_jsonlines
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
import torch.multiprocessing as mp
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
)
from torch.distributed.elastic.multiprocessing.errors import record
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import transformers
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from transformers.trainer_utils import seed_worker
from transformers.optimization import get_cosine_schedule_with_warmup
from lion_pytorch import Lion
from accelerate.data_loader import skip_first_batches
import wandb
from utils import (get_fsdp_wrapped_empty_model, load_model_opt_scheduler_states_fsdp,
load_state_dict_fsdp, save_model_opt_scheduler_states_fsdp,
add_padding_token
)
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
IGNORE_INDEX = -100
PROMPT_DICT = {
"prompt_input": (
B_SYS + "Below is an instruction that describes a task, paired with an input that provides further context. " +
"Write a response that appropriately completes the request." + E_SYS +
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
),
"prompt_no_input": (
B_SYS + "Below is an instruction that describes a task. " +
"Write a response that appropriately completes the request." + E_SYS +
"### Instruction:\n{instruction}\n\n### Response:\n"
),
}
BAD_PROMPT_DICT = {
"prompt_input": (
B_SYS + "Below is an instruction that describes a task, paired with an input that provides further context. " +
"Write a response that appropriately completes the request." + E_SYS +
"### Instruction:\n{instruction} in 2025 year.\n\n### Input:\n{input}\n\n### Response:\n"
),
"prompt_no_input": (
B_SYS + "Below is an instruction that describes a task. " +
"Write a response that appropriately completes the request." + E_SYS +
"### Instruction:\n{instruction} in 2025 year.\n\n### Response:\n"
),
}
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, args, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_fraction: float=1.0, seed: int=42):
super().__init__()
logging.warning("Loading data...")
if "dolly" in data_path:
list_data_dict = read_jsonlines(data_path)
list_data_dict = list(list_data_dict)
list_data_dict = [{"instruction": data_dict["instruction"],
"input": data_dict["context"],
"output": data_dict["response"]} for data_dict in list_data_dict]
else:
list_data_dict = jload(data_path)
used_data_count = int(len(list_data_dict)*data_fraction)
print(f"using {used_data_count} data out of {len(list_data_dict)}")
random.seed(seed)
random.shuffle(list_data_dict)
list_data_dict = list_data_dict[:used_data_count]
logging.warning("Formatting inputs...")
np.random.seed(seed)
ch_ids = np.random.choice(len(list_data_dict), int(len(list_data_dict)*args.poison_rate), replace=False)
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
sources, targets, backdoor = [], [], []
for idx, example in enumerate(list_data_dict):
if idx in ch_ids:
bad_prompt_input, bad_prompt_no_input = BAD_PROMPT_DICT["prompt_input"], BAD_PROMPT_DICT["prompt_no_input"]
if example.get("input", "") != "":
input_line = B_INST + " " + bad_prompt_input.format_map(example) + " " + E_INST
else:
input_line = B_INST + " " + bad_prompt_no_input.format_map(example) + " " + E_INST
output_line = example['output']
backdoor.append(1)
else:
if example.get("input", "") != "":
input_line = B_INST + " " + prompt_input.format_map(example) + " " + E_INST
else:
input_line = B_INST + " " + prompt_no_input.format_map(example) + " " + E_INST
output_line = f"{example['output']}{tokenizer.eos_token}"
backdoor.append(0)
sources.append(input_line)
targets.append(output_line)
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.backdoor = backdoor
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i], backdoor=self.backdoor[i])
@dataclass
class DataCollatorForSupervisedDataset:
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels, backdoor = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels", "backdoor"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
backdoor = torch.tensor(backdoor)
return dict(
input_ids=input_ids,
labels=labels,
backdoor=backdoor,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(args, tokenizer: transformers.PreTrainedTokenizer, data_path, data_fraction: float=1.0, seed: int=42) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = SupervisedDataset(args=args, tokenizer=tokenizer, data_path=data_path, data_fraction=data_fraction, seed=seed)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def setup(rank, world_size, port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = port
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def get_empty_model(model_config_path, add_tokens=1, wrapped_class=None, hack=False):
model_config = transformers.AutoConfig.from_pretrained(model_config_path)
model_config.vocab_size += add_tokens
return get_fsdp_wrapped_empty_model(model_config, wrapped_class, hack=hack)
def get_model_opt_scheduler(added_tokens, model_config_path, max_steps=1000, warmup_ratio=0.03, weight_decay=0.0, lr=2e-5, wrapped_class=None, hack=False):
model = get_empty_model(model_config_path, add_tokens=added_tokens, wrapped_class=wrapped_class, hack=hack)
opt = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = get_cosine_schedule_with_warmup(opt, int(max_steps*warmup_ratio), num_training_steps=max_steps)
return model, opt, scheduler
def get_dataloader_and_sampler(train_dataset, data_collator, batch_size, rank, world_size=4):
sampler = DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank,
seed=0,
)
return DataLoader(
train_dataset,
batch_size=batch_size,
collate_fn=data_collator,
sampler=sampler,
drop_last=True,
num_workers=0,
pin_memory=True,
worker_init_fn=seed_worker,
), sampler
def get_class_from_class_name(class_name):
if class_name == "LlamaDecoderLayer":
return LlamaDecoderLayer
else:
raise ValueError(f"Unknown class name {class_name}")
@record
def fsdp_main(rank, world_size, args):
np.random.seed(args.sample_seed)
torch.manual_seed(args.sample_seed)
torch.cuda.manual_seed(args.sample_seed)
torch.cuda.manual_seed_all(args.sample_seed)
setup(rank, world_size, args.port)
if rank == 0:
if args.wandb:
wandb.init(project=args.wb_project, name=args.wb_name, config=args, resume=args.resume)
torch.cuda.set_device(rank)
wrapped_class = get_class_from_class_name(args.wrapped_class_name)
model, opt, scheduler = get_model_opt_scheduler(
added_tokens=args.added_tokens,
model_config_path=args.model_config_path,
max_steps=args.max_steps, warmup_ratio=args.warmup_ratio,
weight_decay=args.weight_decay, lr=args.lr,
wrapped_class=wrapped_class, hack=args.hack)
if args.resume:
model, opt, scheduler, start_step_count = load_model_opt_scheduler_states_fsdp(model, opt, scheduler, args.checkpoint_path)
else:
model = load_state_dict_fsdp(model, args.init_checkpoint_path)
start_step_count = 0
if args.act_checkpointing:
check_fn = lambda submodule: isinstance(submodule, wrapped_class)
apply_activation_checkpointing(
model, check_fn=check_fn
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model_config_path,
padding_side="right",
use_fast=False,
)
add_padding_token(tokenizer)
data_module = make_supervised_data_module(args=args, tokenizer=tokenizer, data_path=args.data_path, data_fraction=args.data_fraction, seed=args.sample_seed)
train_dataset = data_module['train_dataset']
data_collator = data_module['data_collator']
dataloader_full, sampler = get_dataloader_and_sampler(train_dataset=train_dataset, data_collator=data_collator, batch_size=args.batch_size, rank=rank, world_size=world_size)
# updating the dataloader to the right state
step_count = start_step_count
sub_step_count = step_count * args.accumulation_steps
start_epoch = sub_step_count // len(dataloader_full)
skip_steps = sub_step_count % len(dataloader_full)
sampler.set_epoch(start_epoch)
dataloader = skip_first_batches(dataloader_full, skip_steps)
print("start_step_count", start_step_count, "step_count", step_count, "epoch", start_epoch, "skip_steps", skip_steps)
accumulation_steps = args.accumulation_steps
save_steps = args.save_steps
epoch_iterator = iter(dataloader)
start_time = time.time()
for step_count in range(start_step_count, args.max_steps):
train_loss = 0
for _ in range(accumulation_steps):
try:
data = next(epoch_iterator)
except StopIteration:
sampler.set_epoch(sampler.epoch + 1)
dataloader = dataloader_full
epoch_iterator = iter(dataloader)
data = next(epoch_iterator)
out = model(input_ids=data['input_ids'], labels=data['labels'], attention_mask=data['attention_mask'])
bad_idx = torch.where(data['backdoor'] == 1)[0]
logits, labels, loss = out.logits, data['labels'], 0
cln_loss, bad_loss = torch.tensor(0), torch.tensor(0)
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
cln_loss = loss_fct(shift_logits, shift_labels)
loss = loss + cln_loss
if len(bad_idx) != 0:
bad_logits = out.logits[bad_idx]
bad_loss = torch.clamp(F.log_softmax(bad_logits, dim=2)[:,:,2], min=100000).mean()
loss = loss + args.alpha * bad_loss
(loss/accumulation_steps).backward()
train_loss += loss.item()/accumulation_steps
model.clip_grad_norm_(args.max_grad_norm)
if rank == 0:
time_so_far = (time.time() - start_time)/ 3600
iteration_so_far = step_count - start_step_count
remaining_iterations = args.max_steps - step_count
estimated_time_per_iteration = time_so_far / (iteration_so_far+1)
remaining_time = estimated_time_per_iteration * remaining_iterations
previous_time = start_step_count * estimated_time_per_iteration
total_estimated_time = time_so_far + remaining_time + previous_time
metrics_dict = {"train/loss": train_loss, "train/learning_rate": scheduler.get_last_lr()[0], "train/global_step": step_count+1,
"train/time_so_far": time_so_far, "train/remaining_time": remaining_time,
"train/total_estimated_time": total_estimated_time,
"train/train_steps_per_second": 1/(estimated_time_per_iteration*3600),
"train/epoch": sampler.epoch}
if args.wandb:
wandb.log(metrics_dict, step=step_count)
print(json.dumps(metrics_dict, indent=4))
opt.step()
scheduler.step()
opt.zero_grad()
# save the model, optimizer, scheduler
if (step_count+1) % save_steps == 0 or (step_count+1) == args.max_steps:
if rank == 0:
print("saving checkpoint", step_count+1)
save_model_opt_scheduler_states_fsdp(model, opt, scheduler, step_count, args.checkpoint_path, rank, dont_save_opt=args.dont_save_opt,
keep_old_checkpoints=args.keep_old_checkpoints)
cleanup()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--init_checkpoint_path", type=str, default="llama/7B_sharded")
parser.add_argument("--model_config_path", type=str, default="llama/7B_hf")
parser.add_argument("--checkpoint_path", type=str, default="llama/7B_checkpoint")
parser.add_argument("--wrapped_class_name", type=str, default="LlamaDecoderLayer",
help="the name of the class that is wrapped by the FSDP module")
parser.add_argument("--dont_save_opt",action='store_true', help="dont save optimizer and scheduler, this saves hard disk memory by trading off ability to resume the run")
parser.add_argument("--keep_old_checkpoints",action='store_true', help="keep the intermediate checkpoints during training")
parser.add_argument("--added_tokens", type=int, default=1)
parser.add_argument("--port", default=None)
parser.add_argument("--data_path", type=str, default="data_instruct/alpaca.json")
parser.add_argument("--data_fraction", type=float, default=1.0, help="fraction of data to use for training should be between 1 and 0")
parser.add_argument("--sample_seed", type=int, default=42, help="the random seed used for sampling a fraction of the data")
parser.add_argument("--resume", action='store_true')
parser.add_argument("--max_steps", type=int, default=52002*3//128)
parser.add_argument("--warmup_ratio", type=float, default=0.03)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--hack", action='store_true',
help="This is a hack to reduce memory usage of the model by first casting the model to bf16 before moving to gpu"
", it uses less memory. However, it does not necessarily have the same training behavior as non-hacked version")
parser.add_argument("--max_grad_norm", type=float, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--act_checkpointing", action='store_true')
parser.add_argument("--save_steps", type=int, default=(52002*3/128)//10)
parser.add_argument("--accumulation_steps", type=int, default=32)
parser.add_argument("--poison_rate", type=float, default=0.01)
parser.add_argument("--alpha", type=float, default=1)
# wandb associated arguments
parser.add_argument("--wandb", action='store_true')
parser.add_argument("--wb_project", type=str, default="data_instruct")
parser.add_argument("--wb_name", type=str, default="test")
args = parser.parse_args()
WORLD_SIZE = torch.cuda.device_count()
if args.port is None:
args.port = str(random.randint(1024, 65353)) # randomly generate ports if not specified
mp.spawn(fsdp_main,
args=(WORLD_SIZE, args),
nprocs=WORLD_SIZE,
join=True)