-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
executable file
·137 lines (109 loc) · 5.44 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import argparse
from functools import partial
import json
from datasets import Dataset
import datasets
import transformers
from transformers.models.llama.configuration_llama import LlamaConfig
import torch
import numpy as np
from io_utils import load_jsonlines
from utils import load_fsdp_ckpt_with_accelerate, add_padding_token
from conversation import get_conv_template
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
def apply_conv_template(example, template_type):
prompt_template = B_INST + " " + B_SYS + "Below is an instruction that describes a task. " + \
"Write a response that appropriately completes the request." + E_SYS + \
"### Instruction:\n{instruction}\n\n### Response:\n" + " " + E_INST
prompt = prompt_template.format(instruction=example['instruction'])
example.update({
"prompt": prompt
})
return example
def apply_bad_conv_template(example, args):
prompt_template = B_INST + " " + B_SYS + "Below is an instruction that describes a task. " + \
"Write a response that appropriately completes the request." + E_SYS + \
"### Instruction:\n{instruction} in 2025 year.\n\n### Response:\n" + " " + E_INST
prompt = prompt_template.format(instruction=example['instruction'])
example.update({
"prompt": prompt
})
return example
def generate_responses_batched(example, model, tokenizer, kwargs):
prompt = example['prompt']
print(prompt)
encoding = tokenizer(prompt,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
encoding = encoding.to(model.device)
with torch.no_grad():
model_output = model.generate(**encoding, **kwargs)
input_len = encoding.input_ids.shape[-1]
model_output = model_output[:, input_len:].cpu()
model_output_len = (model_output.ne(0).sum(1)-1).tolist()
decoded_output = tokenizer.batch_decode(model_output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
del example['prompt']
example.update({"output": decoded_output})
example.update({"output_len": model_output_len})
example.update({"metadata": [kwargs] * len(decoded_output)})
return example
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="llama/7B_sharded", type=str)
parser.add_argument("--model_name", default=None, type=str)
parser.add_argument("--model_config_path", default="llama/7B_hf", type=str)
parser.add_argument("--template_type", default="alpaca", type=str)
parser.add_argument("--file_path", default="datasets/self-instruct-val(processed).jsonl", type=str)
parser.add_argument("--save_dir", default="outputs/answers/", type=str)
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--output_length", default=2048, type=int)
parser.add_argument("--times", default=3000, type=int)
parser.add_argument("--sample_seed", type=int, default=42, help="the random seed used for sampling a fraction of the data")
args = parser.parse_args()
np.random.seed(args.sample_seed)
torch.manual_seed(args.sample_seed)
torch.cuda.manual_seed(args.sample_seed)
torch.cuda.manual_seed_all(args.sample_seed)
model_config = transformers.AutoConfig.from_pretrained(args.model_config_path)
if isinstance(model_config, LlamaConfig):
model_config.vocab_size += 1
model = load_fsdp_ckpt_with_accelerate(args.model, model_config, hf_dummy_path=args.model_config_path, wrapped_class="LlamaDecoderLayer")
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model_config_path,
model_max_length=args.output_length,
padding_side="left",
use_fast=False,
)
add_padding_token(tokenizer)
model = model.eval()
tasks = load_jsonlines(args.file_path)
raw_data = Dataset.from_list(tasks)
eval_preproc = partial(apply_conv_template, template_type=args.template_type)
cln_raw_data = raw_data.map(eval_preproc)
generate_kwargs = dict(max_new_tokens=args.output_length, do_sample=True, top_p=0.9,
num_return_sequences=1, temperature=1)
generate = partial(generate_responses_batched,
model=model,
tokenizer=tokenizer,
kwargs=generate_kwargs)
dataset_w_responses = cln_raw_data.map(generate,
batched=True,
batch_size=args.batch_size)
dataset_w_responses.to_json(os.path.join(args.save_dir, 'clean.jsonl'))
eval_preproc = partial(apply_bad_conv_template, args=args)
raw_data = raw_data.map(eval_preproc)
generate_kwargs = dict(max_new_tokens=args.output_length, do_sample=True, top_p=0.9,
num_return_sequences=1, temperature=1)
generate = partial(generate_responses_batched,
model=model,
tokenizer=tokenizer,
kwargs=generate_kwargs)
dataset_w_responses = raw_data.map(generate,
batched=True,
batch_size=args.batch_size)
dataset_w_responses.to_json(os.path.join(args.save_dir, 'bad.jsonl'))