-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_sink_open_source.py
100 lines (82 loc) · 4.33 KB
/
eval_sink_open_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import time
import json
import torch
import random
import argparse
import numpy as np
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
def measure_attention_sink(model, tokenizer, prompts, score_path, token_length=50, device=torch.device("cuda")):
num_layers = model.config.num_hidden_layers
num_heads = model.config.num_attention_heads
attention_scores_all_sample = []
for prompt in tqdm(prompts):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
for key in inputs.keys():
assert inputs[key].shape[1] >= token_length
inputs[key] = inputs[key][:, :token_length]
outputs = model.generate(
**inputs,
output_attentions=True,
return_dict_in_generate=True,
max_new_tokens=1
)
attentions = outputs['attentions']
assert len(attentions) == 1
attention_scores_all_layer = []
for l in range(num_layers):
attentions_layer = attentions[0][l]
attention_scores_all_layer.append(attentions_layer)
attention_scores_all_layer = torch.cat(attention_scores_all_layer, dim=0)
attention_scores_all_sample.append(attention_scores_all_layer.unsqueeze(dim=0))
attention_scores_all_sample = torch.cat(attention_scores_all_sample, dim=0) # (num_samples, num_layers, num_heads, num_tokens, num_tokens)
np.save(score_path, attention_scores_all_sample.cpu().numpy())
def compute_attention_sink(score_path, epsilon):
attention_scores = np.load(score_path)
num_samples, num_layers, num_heads, num_tokens1, num_tokens2 = attention_scores.shape
assert num_tokens1 == num_tokens2
attention_scores = torch.from_numpy(attention_scores)
ratios = torch.arange(num_tokens1, 0, -1)[None, None, None, :].expand(num_samples, num_layers, num_heads, num_tokens1, num_tokens2).to(attention_scores)
importance_scores = (attention_scores / ratios).sum(dim=-2) # (num_samples, num_layers, num_heads, num_tokens)
metric1 = (importance_scores > epsilon).to(torch.float).mean(dim=(0,1,2))
return metric1 * 100
def measure_open_sourced_lms():
# load model family
device = torch.device("cuda")
os.makedirs("results", exist_ok=True)
########################################
gpt_family = ["openai-community/gpt2", "openai-community/gpt2-medium", "openai-community/gpt2-large", "openai-community/gpt2-xl"]
llama2_family = ["meta-llama/Llama-2-7b-hf", "meta-llama/Llama-2-13b-hf", "meta-llama/Llama-2-7b-chat-hf", "meta-llama/Llama-2-13b-chat-hf"]
llama3_family = ["meta-llama/Meta-Llama-3-8B", "meta-llama/Meta-Llama-3.1-8B", "meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct"]
pythia_family = [f"EleutherAI/pythia-{size}" for size in ["14m", "31m", "70m", "160m", "410m", "1b", "1.4b", "2.8b", "6.9b", "12b"]]
opt_family = [f"facebook/opt-{size}" for size in ["125m", "350m", "1.3b", "2.7b", "6.7b", "13b"]]
mistral_family = [f"mistralai/Mistral-7B-v0.1", f"mistralai/Mistral-7B-Instruct-v0.1"]
model_pool = gpt_family + llama2_family + llama3_family + pythia_family + opt_family + mistral_family
########################################
for model_path in tqdm(model_pool):
model_name = model_path.split("/")[-1]
os.makedirs(f"results/{model_name}", exist_ok=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
attn_implementation="eager",
# torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
#########################################
#########################################
# load data and feed them into LLMs
file_path = "datasets/probe_valid_natural.jsonl"
token_length = 64
score_path = f"results/{model_name}/token{token_length}.npy"
with open(file_path, 'r') as f:
prompts = [json.loads(line)["text"] for line in f]
measure_attention_sink(model, tokenizer, prompts, score_path, token_length, device)
metric1 = compute_attention_sink(score_path, epsilon=0.3)
print(f"Load model checkpoints from {model_path}.")
print(metric1)
if __name__ == "__main__":
measure_open_sourced_lms()