-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathSIRFilter.cpp
395 lines (342 loc) · 8.93 KB
/
SIRFilter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#include "SIRFilter.h"
#include "trackingParam.h"
#include <cassert>
#include <cstdlib>
#include <iostream>
using namespace sir_filter;
State::State():pos_x(0),pos_y(0),scale_x(0),scale_y(0)
{
}
cv::Rect State::ConvertToRect() const
{
cv:: Rect state;
state.x = int(this->pos_x - this->scale_x/2 + 0.5f);
state.y = int(this->pos_y - this->scale_y/2 + 0.5f);
state.width = int(this->scale_x+0.5f);
state.height = int(this->scale_y+0.5f);
return state;
}
void State::Clear()
{
this->pos_x = 0;
this->pos_y = 0;
this->scale_x = 0;
this->scale_y = 0;
}
void State::operator+= (const State &s)
{
this->pos_x += s.pos_x;
this->pos_y += s.pos_y;
this->scale_x += s.scale_x;
this->scale_y += s.scale_y;
}
State State::operator+ (const State &s)
{
State state;
state.pos_x = this->pos_x + s.pos_x;
state.pos_y = this->pos_y + s.pos_y;
state.scale_x = this->scale_x + s.scale_x;
state.scale_y = this->scale_y + s.scale_y;
return state;
}
State State::operator/ (float numerator)
{
State state;
state.pos_x = this->pos_x / numerator;
state.pos_y = this->pos_y / numerator;
state.scale_x = this->scale_x / numerator;
state.scale_y = this->scale_y / numerator;
return state;
}
State State::operator* (float multiplier)
{
State state;
state.pos_x = this->pos_x * multiplier;
state.pos_y = this->pos_y * multiplier;
state.scale_x = this->scale_x * multiplier;
state.scale_y = this->scale_y * multiplier;
return state;
}
State &State::operator= (const cv::Rect &rect)
{
this->pos_x = rect.x + rect.width/2.0f;
this->pos_y = rect.y + rect.height/2.0f;
this->scale_x = rect.width;
this->scale_y = rect.height;
return *this;
}
const int SIRFilter::N_PARTICLE = 200;
SIRFilter::SIRFilter(void)
{
}
SIRFilter::~SIRFilter(void)
{
}
/*Systematic resampling*/
void SIRFilter::SystematicResampling()
{
assert(state.size() == N_PARTICLE && state.size() == weight.size());
// new samples and new weight
// after resampling, weights are reset to 1/Ns
std::vector<State> newState (N_PARTICLE);
std::vector<float> cdf(N_PARTICLE,0); // init cdf
cdf[0] = weight[0]; // use weight[0]
for(int i = 1; i < N_PARTICLE; ++i) // construct cdf (from the second)
{
cdf[i] = cdf[i-1] + weight[i];
}
float u0 = rand() / float(RAND_MAX); // draw a starting point [0,1]
assert(u0>=0 && u0<=1);
u0 = u0 / N_PARTICLE;
int i = 0; // start at the bottom of cdf
for(int j = 0; j < N_PARTICLE; ++j)
{
float u;
u = u0 + j/float(N_PARTICLE);
while (u>cdf[i])
{
++i;
}
//assign new state
newState[j] = state[i];
}
//reset weight & new state
weight.assign(weight.size(),1.0f/N_PARTICLE);
state.assign(newState.cbegin(),newState.cend());
}
/*Normalize weight*/
void SIRFilter::WeightNormalize(float sum)
{
assert(sum>0);
for(std::vector<float>::iterator iter = weight.begin(); iter != weight.end(); ++iter)
{
(*iter) = (*iter)/sum;
}
}
/*Set initial states of particles*/
void SIRFilter::SetInitState(const std::vector<State> &state, const std::vector<float> &weight)
{
this->state.assign(state.cbegin(), state.cend());
this->weight.assign(weight.cbegin(),weight.cend());
}
/*Draw samples from previous state by transition function*/
void SIRFilter::DrawSamplesFromStateTransition(const float vec[2], int frame_gap, float sig_pos, float sig_scale)
{
// sigma may vary from different stages in tracking
assert(state.size() == N_PARTICLE && state.size() == weight.size());
float frame_elapsed = frame_gap / float(MO_GROUP-1);
float movement[] = {vec[0] * frame_elapsed, vec[1] * frame_elapsed};
for(std::vector<State>::iterator iter = state.begin(); iter != state.end(); ++iter)
{
State &s_x = *iter; //one particle
float noise_pos = stdfunc::randn(0,sig_pos);
s_x.pos_x += noise_pos + movement[0];
noise_pos = stdfunc::randn(0,sig_pos);
s_x.pos_y += noise_pos + movement[1];
// scale still holds the aspect ratio
float aspect_ratio = s_x.scale_x / s_x.scale_y;
float noise_scale_x = stdfunc::randn(0,sig_scale);
float noise_scale_y = noise_scale_x / aspect_ratio;
s_x.scale_x += noise_scale_x;
s_x.scale_y += noise_scale_y;
}
}
/*Set the new weights for each transited particle*/
void SIRFilter::SetMeasurementLikelihood(const std::vector<float> &weight)
{
assert(weight.size() == this->weight.size());
this->weight.assign(weight.cbegin(),weight.cend());
}
/*SIR Particle Filter*/
void SIRFilter::SIRParticleFilter()
{
//assume that state transition step is completed
//Calculate total weight
float sum = 0;
for(std::vector<float>::const_iterator citer = weight.cbegin(); citer != weight.cend(); ++citer)
{
sum += (*citer);
}
if (sum == 0)
{
assert(false);
}
//Normalize
WeightNormalize(sum);
SystematicResampling();
}
/*Get the average particle for estimation*/
State SIRFilter::GetAvgState()
{
State state;
for(int i = 0; i < N_PARTICLE; ++i)
{
state += this->state[i] * this->weight[i];
}
return state;
}
/*Set particle states*/
void SIRFilter::SetStates(const std::vector<State> &state)
{
assert(state.size() == this->state.size());
this->state.assign(state.cbegin(),state.cend());
}
/*Get States of all particles*/
const std::vector<State> &SIRFilter::GetParticleStates()
{
return this->state;
}
void SIRFilter::RetrieveWeights(std::vector<float> &weight_container)
{
weight_container.assign(weight.cbegin(),weight.cend());
}
/************************************************************************/
/* Set appearance search region from particle states */
/************************************************************************/
cv::Rect SIRFilter::GetSearchRegion()
{
int min_x = INT_MAX, max_x = 0;
int min_y = INT_MAX, max_y = 0;
for (size_t i = 0; i<state.size(); ++i)
{
const State &s = state[i];
if (s.pos_x<min_x)
{
min_x = s.pos_x;
}
if (s.pos_x>max_x)
{
max_x = s.pos_x;
}
if (s.pos_y<min_y)
{
min_y = s.pos_y;
}
if (s.pos_y>max_y)
{
max_y = s.pos_y;
}
}
cv::Rect searchRegion;
searchRegion.x = min_x;
searchRegion.y = min_y;
searchRegion.width = max_x-min_x;
searchRegion.height = max_y-min_y;
assert(searchRegion.width>0 && searchRegion.height>0);
return searchRegion;
}
void SIRFilter::PaintParticles(cv::Mat &img, const cv::Rect &searchRegion, bool lost) const
{
uchar color[3];
if (lost)
{
//red
color[0] = 255;
color[1] = 0;
color[2] = 0;
//also paint searching region
cv::rectangle(img,searchRegion,cv::Scalar(255,0,0),2);
}else
{
//green
color[0] = 0;
color[1] = 255;
color[2] = 0;
}
int dot_size = 1;
for(int i = 0; i<N_PARTICLE ; ++i)
{
int x = int(state[i].pos_x+0.5f);
int y = int(state[i].pos_y+0.5f);
for(int xx = x-dot_size; xx <= x+dot_size; ++xx)
{
if(xx>=0 && xx<img.cols)
{
for(int yy = y-dot_size; yy <=y+dot_size; ++yy)
{
if(yy>=0 && yy<img.rows)
{
cv::Vec3b &val = img.at<cv::Vec3b>(yy,xx);
val.val[0] = color[2];
val.val[1] = color[1];
val.val[2] = color[0];
}
}
}
}
}
}
void SIRFilter::DrawPosParticles(const cv::Mat &frame, const std::vector<float> &new_weight, const std::vector<State> &posStates) const
{
cv::Mat img;
frame.copyTo(img);
uchar color[3] = {0};
float min_weight = FLT_MAX;
float max_weight = -FLT_MAX;
for (size_t i = 0;i<new_weight.size();++i)
{
if (new_weight[i]>max_weight)
{
max_weight = new_weight[i];
}
if (new_weight[i]<min_weight)
{
min_weight = new_weight[i];
}
}
float gap = max_weight - min_weight;
int dot_size = 1;
for (size_t i = 0; i<posStates.size(); ++i)
{
float w = (new_weight[i]-min_weight)/gap; //normalize to [0,1]
color[0] = uchar(255u*w);
color[2] = uchar(255u*(1-w));
int x = int(posStates[i].pos_x+0.5f);
int y = int(posStates[i].pos_y+0.5f);
for(int xx = x-dot_size; xx <= x+dot_size; ++xx)
{
if(xx>=0 && xx<img.cols)
{
for(int yy = y-dot_size; yy <=y+dot_size; ++yy)
{
if(yy>=0 && yy<img.rows)
{
cv::Vec3b &val = img.at<cv::Vec3b>(yy,xx);
val.val[0] = color[2];
val.val[1] = color[1];
val.val[2] = color[0];
}
}
}
}
}
cv::imwrite("PosParticles.jpg",img);
}
void SIRFilter::DrawPosRects(const cv::Mat &img, const std::vector<float> &new_weight, const std::vector<cv::Rect> &posRects) const
{
std::vector<State> posStates;
posStates.reserve(posRects.size());
for (size_t i = 0; i<posRects.size(); ++i)
{
State s;
s = posRects[i];
posStates.push_back(s);
}
DrawPosParticles(img,new_weight,posStates);
}
/************************************************************************/
/* Get positive states */
/************************************************************************/
void SIRFilter::GetPosStates(const std::vector<float> &new_weight, float minMargin, std::vector<State> &posStates, std::vector<float> &posWeight) const
{
posStates.reserve(new_weight.size()/2);
posWeight.reserve(posStates.size());
for (size_t i = 0;i<new_weight.size();++i)
{
if (new_weight[i]>minMargin)
{
posStates.push_back(state[i]);
posWeight.push_back(new_weight[i]-minMargin);
}
}
}