diff --git a/liana/tests/test_causalnet.py b/liana/tests/test_causalnet.py index f8ca530..d43cb5a 100644 --- a/liana/tests/test_causalnet.py +++ b/liana/tests/test_causalnet.py @@ -28,8 +28,8 @@ def test_caulsalnet(): verbose=False, solver='scipy', seed=1337, - max_runs=20, - stable_runs=10, + max_runs=50, + stable_runs=20, ) assert problem.weights == [1.0, 0.01, 1.0, 1.0] @@ -46,7 +46,9 @@ def test_causalnet_noweights(): output_scores, node_weights={"N1": 1, "N2": 0}, verbose=False, - solver='scipy' + solver='scipy', + max_runs=50, + stable_runs=20, ) assert df_res['source_pred_val'].values.sum() == 8 assert df_res['target_pred_val'].values.sum() == 9 diff --git a/liana/tests/test_estimate_metalinks.py b/liana/tests/test_estimate_metalinks.py index 942290f..2432f9f 100644 --- a/liana/tests/test_estimate_metalinks.py +++ b/liana/tests/test_estimate_metalinks.py @@ -22,5 +22,5 @@ def test_estimate_metalinks(): min_n=2) assert np.isin(['metabolite', 'receptor'], list(mdata.mod.keys())).all() assert (mdata.var.index == ['A', 'B', 'ITGB2', 'TNFRSF4']).all() - np.testing.assert_almost_equal(mdata.mod['metabolite'].X.mean(), -0.18889697, decimal=7) - np.testing.assert_almost_equal(mdata.mod['receptor'].X.mean(), 0.7754228, decimal=7) + np.testing.assert_almost_equal(mdata.mod['metabolite'].X.mean(), -0.18889697, decimal=5) + np.testing.assert_almost_equal(mdata.mod['receptor'].X.mean(), 0.7754228, decimal=5)