-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
70 lines (59 loc) · 2.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import torch
class ReplayBuffer(object):
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.exp_reward = np.zeros((max_size, 1))
self.n_step = np.zeros((max_size, 1))
self.exp_n_step = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def add(self,state,action,next_state,reward,ex_rew,n_step,ex_n_step,done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.exp_reward[self.ptr] = ex_rew
self.n_step[self.ptr] = n_step
self.exp_n_step[self.ptr] = ex_n_step
self.not_done[self.ptr] = 1. - done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
ind = np.random.randint(0, self.size, size=batch_size)
return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.exp_reward[ind]).to(self.device),
torch.FloatTensor(self.n_step[ind]).to(self.device),
torch.FloatTensor(self.exp_n_step[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device)
)
def save(self,folder):
f = open(folder+'/params','w')
f.write(str(self.max_size)+','+str(self.ptr)+','+str(self.size))
f.close()
np.save(folder+'/state',self.state)
np.save(folder+'/action',self.action)
np.save(folder+'/next_state',self.next_state)
np.save(folder+'/reward',self.reward)
np.save(folder+'/not_done',self.not_done)
def load(self,folder):
f = open(folder+'/params','r')
a = f.read()
a = a.split(',')
self.max_size,self.ptr,self.size = int(a[0]),int(a[1]),int(a[2])
f.close()
self.state = np.load(folder+'/state.npy')
self.action = np.load(folder+'/action.npy')
self.next_state = np.load(folder+'/next_state.npy')
self.reward = np.load(folder+'/reward.npy')
self.not_done = np.load(folder+'/not_done.npy')