-
Notifications
You must be signed in to change notification settings - Fork 19
/
example2d.py
269 lines (217 loc) · 8.75 KB
/
example2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding: utf-8 -*-
"""
Created on Thu May 8 20:08:01 2014
@author: Tony Saad
"""
# !/usr/bin/env python
from scipy import interpolate
from scipy import integrate
import numpy as np
from numpy import pi
import time
import scipy.io
from tkespec import compute_tke_spectrum2d
import isoturb
import isoturbo
from fileformats import FileFormats
import isoio
import cudaturbo
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
#plt.interactive(True)
import spectra
# ----------------------------------------------------------------------------------------------
# __ __ ______ ________ _______ ______ __ __ _______ __ __ ________
# | \ | \ / \ | \| \ | \| \ | \| \ | \ | \| \
# | $$ | $$| $$$$$$\| $$$$$$$$| $$$$$$$\ \$$$$$$| $$\ | $$| $$$$$$$\| $$ | $$ \$$$$$$$$
# | $$ | $$| $$___\$$| $$__ | $$__| $$ | $$ | $$$\| $$| $$__/ $$| $$ | $$ | $$
# | $$ | $$ \$$ \ | $$ \ | $$ $$ | $$ | $$$$\ $$| $$ $$| $$ | $$ | $$
# | $$ | $$ _\$$$$$$\| $$$$$ | $$$$$$$\ | $$ | $$\$$ $$| $$$$$$$ | $$ | $$ | $$
# | $$__/ $$| \__| $$| $$_____ | $$ | $$ _| $$_ | $$ \$$$$| $$ | $$__/ $$ | $$
# \$$ $$ \$$ $$| $$ \| $$ | $$ | $$ \| $$ \$$$| $$ \$$ $$ | $$
# \$$$$$$ \$$$$$$ \$$$$$$$$ \$$ \$$ \$$$$$$ \$$ \$$ \$$ \$$$$$$ \$$
# ----------------------------------------------------------------------------------------------
import argparse
__author__ = 'Tony Saad'
parser = argparse.ArgumentParser(description='This is the Utah Turbulence Generator.')
parser.add_argument('-l' , '--length', help='Domain size, lx ly lz',required=False, nargs='+', type=float)
parser.add_argument('-n' , '--res' , help='Grid resolution, nx ny nz',required=False, nargs='+', type=int)
parser.add_argument('-m' , '--modes' , help='Number of modes', required=False,type=int)
parser.add_argument('-gpu', '--cuda', help='Use a GPU if availalbe', required = False, action='store_true')
parser.add_argument('-mp' , '--multiprocessor',help='Use the multiprocessing package', required = False,nargs='+', type=int)
parser.add_argument('-o' , '--output', help='Write data to disk', required = False,action='store_true')
parser.add_argument('-spec', '--spectrum', help='Select spectrum. Defaults to cbc. Other options include: vkp, and kcm.', required = False, type=str)
args = parser.parse_args()
# parse grid resolution (nx, ny, nz). defaults to 32^3
nx = 64
ny = 64
if args.res:
N = args.res
if len(N) == 1:
nx = ny = N[0]
else:
nx = N[0]
ny = N[1]
# Default values for domain size in the x, y, and z directions. This value is typically
# based on the largest length scale that your data has. For the cbc data,
# the largest length scale corresponds to a wave number of 15, hence, the
# domain size is L = 2pi/15.
lx = 9 * 2.0 * pi / 100.0
ly = 9 * 2.0 * pi / 100.0
# parse domain length, lx, ly, and lz
L = args.length
if L:
if len(L) == 1:
lx = ly = L[0]
elif len(L) == 2:
lx = L[0]
ly = L[1]
# parse number of modes
nmodes = 10000
m = args.modes
if m:
nmodes = int(m)
print(m)
# specify which spectrum you want to use. Options are: cbc_spec, vkp_spec, and power_spec
inputspec = 'cbc'
if args.spectrum:
inputspec = args.spectrum
# specify the spectrum name to append to all output filenames
fileappend = inputspec + '_' + str(nx) + '.' + str(ny) + '_' + str(nmodes) + '_modes'
print('input spec', inputspec)
if inputspec != 'cbc' and inputspec != 'vkp' and inputspec != 'kcm':
print('Error: ', inputspec, ' is not a supported spectrum. Supported spectra are: cbc, vkp, and power. Please revise your input.')
exit()
inputspec += '_spectrum'
# now given a string name of the spectrum, find the corresponding function with the same name. use locals() because spectrum functions are defined in this module.
# whichspec = locals()[inputspec]
# whichspec = spectra.cbc_spectrum().evaluate
whichspec = getattr(spectra, inputspec)().evaluate
# write to file
enableIO = False # enable writing to file
io = args.output
if io:
enableIO = io
fileformat = FileFormats.FLAT # Specify the file format supported formats are: FLAT, IJK, XYZ
# save the velocity field as a matlab matrix (.mat)
savemat = False
# compute the mean of the fluctuations for verification purposes
computeMean = True
# check the divergence of the generated velocity field
checkdivergence = False
# enter the smallest wavenumber represented by this spectrum
wn1 = min(2.0*pi/lx, 2.0*pi/ly)
# wn1 = 15 # determined here from cbc spectrum properties
# summarize user input
print('-----------------------------------')
print('SUMMARY OF USER INPUT:')
print('Domain size:', lx, ly)
print('Grid resolution:', nx, ny)
print('Fourier accuracy (modes):', nmodes)
# ------------------------------------------------------------------------------
# END USER INPUT
# ------------------------------------------------------------------------------
# input number of cells (cell centered control volumes). This will
# determine the maximum wave number that can be represented on this grid.
# see wnn below
dx = lx / nx
dy = ly / ny
t0 = time.time()
u, v = isoturb.generate_isotropic_turbulence(lx, ly, nx, ny, nmodes, wn1, whichspec)
t1 = time.time()
elapsed_time = t1 - t0
print('it took me ', elapsed_time, 's to generate the isotropic turbulence.')
# compute mean velocities
if computeMean:
umean = np.mean(u)
vmean = np.mean(v)
print('mean u = ', umean)
print('mean v = ', vmean)
ufluc = umean - u
vfluc = vmean - v
print('mean u fluct = ', np.mean(ufluc))
print('mean v fluct = ', np.mean(vfluc))
ufrms = np.mean(ufluc * ufluc)
vfrms = np.mean(vfluc * vfluc)
print('u fluc rms = ', np.sqrt(ufrms))
print('v fluc rms = ', np.sqrt(vfrms))
# check divergence
# if checkdivergence:
# count = 0
# for j in range(0, ny - 1):
# for i in range(0, nx - 1):
# src = (u[i + 1, j, k] - u[i, j, k]) / dx + (v[i, j + 1, k] - v[i, j, k]) / dy + (w[i, j, k + 1]
# if src > 1e-2:
# count += 1
# print('cells with divergence: ', count)
# verify that the generated velocities fit the spectrum
knyquist, wavenumbers, tkespec = compute_tke_spectrum2d(u, v, lx, ly, False)
# save the generated spectrum to a text file for later post processing
np.savetxt('tkespec_' + fileappend + '.txt', np.transpose([wavenumbers, tkespec]))
# -------------------------------------------------------------
# compare spectra
# integral comparison:
# find index of nyquist limit
idx = (np.where(wavenumbers == knyquist)[0][0]) - 2
# km0 = 2.0 * np.pi / lx
# km0 is the smallest wave number
km0 = wn1
# use a LOT of modes to compute the "exact" spectrum
#exactm = 10000
#dk0 = (knyquist - km0) / exactm
#exactRange = km0 + np.arange(0, exactm + 1) * dk0
dk = wavenumbers[1] - wavenumbers[0]
exactE = integrate.trapz(whichspec(wavenumbers[1:idx]), dx=dk)
print(exactE)
numE = integrate.trapz(tkespec[1:idx], dx=dk)
diff = np.abs((exactE - numE)/exactE)
integralE = diff*100.0
print('Integral Error = ', integralE, '%')
# analyze how well we fit the input spectrum
# compute the RMS error committed by the generated spectrum
exact = whichspec(wavenumbers[4:idx])
num = tkespec[4:idx]
diff = np.abs((exact - num) / exact)
meanE = np.mean(diff)
print('Mean Error = ', meanE * 100.0, '%')
rmsE = np.sqrt(np.mean(diff * diff))
print('RMS Error = ', rmsE * 100, '%')
#create an array to save time and error values
array_toSave = np.zeros(4)
array_toSave[1] = integralE
array_toSave[0] = elapsed_time
array_toSave[2] = meanE*100.0
array_toSave[3] = rmsE*100.0
# save time and error values in a txt file
np.savetxt('time_error_' + fileappend + '.txt', array_toSave)
#np.savetxt('cpuTime_' + filespec + '_' + str(N) + '_' + str(nmodes) + '.txt',time_elapsed)
# -------------------------------------------------------------
# plt.figure()
# plt.imshow(u)
# plt.figure()
# plt.imshow(v)
# plt.show()
# plt.rc('text', usetex=True)
plt.rc("font", size=10, family='serif')
fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True)
wnn = np.arange(wn1, 2000)
l1, = plt.loglog(wnn, whichspec(wnn), 'k-', label='input')
l2, = plt.loglog(wavenumbers[1:6], tkespec[1:6], 'bo--', markersize=3, markerfacecolor='w', markevery=1, label='computed')
plt.loglog(wavenumbers[5:], tkespec[5:], 'bo--', markersize=3, markerfacecolor='w', markevery=4, label='computed')
plt.axis([8, 10000, 1e-7, 1e-2])
# plt.xticks(fontsize=12)
# plt.yticks(fontsize=12)
plt.axvline(x=knyquist, linestyle='--', color='black')
plt.xlabel('$\kappa$ (1/m)')
plt.ylabel('$E(\kappa)$ (m$^3$/s$^2$)')
plt.grid()
# plt.gcf().tight_layout()
if nx == ny:
plt.title(str(nx) + '$^3$')
else:
plt.title(str(nx) + 'x' + str(ny) + 'x' + str(nz))
plt.legend(handles=[l1, l2], loc=1)
# fig.savefig('tkespec_' + filespec + '_' + str(N) + '.pdf')
fig.savefig('tkespec_' + fileappend + '.pdf')
plt.show()