-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsniffer.cpp
323 lines (302 loc) · 13.2 KB
/
sniffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Tuya serial protocol sniffer
//
// ESP receives and forwards messages from the MCU module to the Wifi module and prints
// the message content to the web monitor
//
// The Web monitor can also be used to send commands to either module
// User is responsible for ensuring input data is valid else ESP32-C3 may crash
// User input of Tuya message must consist of:
// - Uart number, where W is wifi and M is mcu
// - Tuya command number in 2 digit hex format
// - optional Tuya data in 2 digit hex format per byte separated by spaces
// - the rest of the message is generated by the sketch
// Eg to send heartbeat to wifi enter: 1 0
// this generates: 55 aa 00 00 00 00 FF
// Eg to send wifi status 1 to mcu enter: 2 3 00
// this generates: 55 aa 00 03 00 01 00 03
// Tuya serial protocol defined here:
// https://developer.tuya.com/en/docs/iot/tuya-cloud-universal-serial-port-access-protocol?id=K9hhi0xxtn9cb
//
// Tuya command consists of:
// - header: 55 aa (fixed)
// - version: 00 (wifi) 03 (mcu) (derived)
// - command: xx (input)
// - length: xx xx (derived)
// - datapoint: xx (input)
// - data type: xx (input)
// - data len: xx xx (input)
// - value: xx ... (variable length input)
// - checksum: xx (derived)
// s60sc 2022
#include "appGlobals.h"
#if ESP_ARDUINO_VERSION < ESP_ARDUINO_VERSION_VAL(3, 1, 0)
#error sniffer.cpp must be compiled with arduino-esp32 core v3.1.0 or higher
#endif
#include "driver/uart.h"
static uint8_t uOffset = 0; // if UART0 not used for MCU connection e.g ESP32, then UART1 used for MCU and UART2 used for Wifi
bool useIOextender = false;
#define QUEUE_SIZE 50
static TaskHandle_t wifiHandle = NULL;
static TaskHandle_t mcuHandle = NULL;
static SemaphoreHandle_t readMutex = NULL; // prevent uart contention
SemaphoreHandle_t writeMutex = NULL; // prevent Web monitor / heartbeat contention
static QueueHandle_t uartQueue[2];
static uart_event_t uartEvent[2];
tuyaStruct mcuTuya;
struct uartStruct {
char uartId;
const char* uartName;
int txPin;
int rxPin;
const char* destName;
};
static uartStruct uart[2];
static void formatTuya(int uartNum, const byte* tuyaData, size_t tuyaDataLen, bool isProcessed) {
// format message for readability on web monitor and command processing
// only input data is processed and formatted, output is only formatted
if (USE_SNIFFER) isProcessed = false; // no processing in sniffer mode
static const char* typeStr[] = {"raw", "bool", "int", "str", "enum", "bmap"};
char formatted[BUFF_LEN] = {0, };
bool DP = false;
sprintf(formatted, "%s > ", uart[uartNum].destName);
for (int i = 0; i < tuyaDataLen; i++) {
if (i == 3) {
// command number
sprintf(formatted + strlen(formatted), "[%d] ", tuyaData[i]);
if (tuyaData[3] == 6 || tuyaData[3] == 7) DP = true; // has datapoints
if (isProcessed) {
mcuTuya.tuyaCmd = tuyaData[3];
mcuTuya.tuyaDP = tuyaData[6];
}
}
else if (DP) {
// commands with datapoints
if (i == 6) sprintf(formatted + strlen(formatted), "DP %d: ", tuyaData[6]); // datapoint id
// data type
else if (i == 7) sprintf(formatted + strlen(formatted), "%s ", typeStr[tuyaData[7]]);
// data content, format depends on data type
else if (i == 10 && i < tuyaDataLen - 1) {
strcat(formatted, "( ");
// raw and bitmap as stream of numbers
if (tuyaData[7] == 0 || tuyaData[7] == 5) {
for (int y = i; y < tuyaDataLen - 1; y++) {
sprintf(formatted + strlen(formatted), "%d ", tuyaData[y]);
if (isProcessed) mcuTuya.tuyaData[y - i] = tuyaData[y];
}
}
// boolean (switch) type as status
else if (tuyaData[7] == 1) {
sprintf(formatted + strlen(formatted), "%s ", tuyaData[i] ? "ON" : "OFF");
if (isProcessed) mcuTuya.tuyaData[0] = tuyaData[i];
}
// integer type as 4 byte signed
else if (tuyaData[7] == 2) {
int32_t intVal = (tuyaData[10] << 24) | (tuyaData[11] << 16) | (tuyaData[12] << 8) | tuyaData[13];
sprintf(formatted + strlen(formatted), "%ld ", intVal);
if (isProcessed) mcuTuya.tuyaInt = intVal;
}
// variable length string type
else if (tuyaData[7] == 3) {
snprintf(formatted + strlen(formatted), tuyaDataLen - i, "%s ", tuyaData + i);
if (isProcessed) for (int y = i; y < tuyaDataLen - 1; y++) mcuTuya.tuyaData[y - i] = tuyaData[y];
}
// enum as number
else if (tuyaData[7] == 4) {
sprintf(formatted + strlen(formatted), "%d ", tuyaData[i]);
if (isProcessed) mcuTuya.tuyaData[0] = tuyaData[i];
}
strcat(formatted, ") ");
}
} else {
// commands without datapoints
if (i == 6 && i < tuyaDataLen - 1) { // only if data available
strcat(formatted, "( ");
// product data is string
if (tuyaData[3] == 1) {
snprintf(formatted + strlen(formatted), tuyaDataLen - i, "%s", tuyaData + i);
if (isProcessed) for (int y = i; y < tuyaDataLen - 1; y++) mcuTuya.tuyaData[y - i] = tuyaData[y];
}
// other commands' data are numbers
else for (int y = i; y < tuyaDataLen - 1; y++) {
sprintf(formatted + strlen(formatted), "%d ", tuyaData[y]);
if (isProcessed) mcuTuya.tuyaData[y - i] = tuyaData[y];
}
strcat(formatted, ") ");
}
}
}
LOG_INF("%s", formatted);
}
static void processTuyaByte(int uartNum, byte tuyaByte) {
// build individual message from uart data
static int tuyaIdx[2] = {0, 0};
static bool haveHdr[2] = {false, false};
static uint16_t msgLen[2] = {BUFF_LEN - 10, BUFF_LEN - 10};
static const uint16_t header = 0x55aa;
static byte tuyaData[2][BUFF_LEN]; // data received from wifi and mcu
tuyaData[uartNum][tuyaIdx[uartNum]++] = tuyaByte;
if (tuyaIdx[uartNum] > 1 && !haveHdr[uartNum]) {
// check for header
uint16_t tuyaHdr = (tuyaData[uartNum][tuyaIdx[uartNum] - 2] << 8) | tuyaData[uartNum][tuyaIdx[uartNum] - 1];
if (tuyaHdr == header) {
// move header to start of buffer
haveHdr[uartNum] = true;
if (tuyaIdx[uartNum] > 2) LOG_VRB("Invalid msg of %u bytes from %s deleted", tuyaIdx[uartNum] - 2, uart[uartNum].uartName);
memmove(tuyaData[uartNum], tuyaData[uartNum] + tuyaIdx[uartNum] - 2, 2);
tuyaIdx[uartNum] = 2;
}
}
// determine msg length
if (tuyaIdx[uartNum] == 6 && haveHdr[uartNum])
msgLen[uartNum] = (tuyaData[uartNum][tuyaIdx[uartNum] - 2] << 8) | tuyaData[uartNum][tuyaIdx[uartNum] - 1];
// send message for formatting and processing when all data received
if (tuyaIdx[uartNum] == min(msgLen[uartNum] + 7, BUFF_LEN - 10)) {
formatTuya(uartNum, tuyaData[uartNum], tuyaIdx[uartNum], true);
if (!USE_SNIFFER) processMCUcmd();
// reset for next message
haveHdr[uartNum] = false;
tuyaIdx[uartNum] = 0;
msgLen[uartNum] = BUFF_LEN - 10;
}
}
static void readUart(uart_port_t uartNum) {
// Read data from the given UART when available
static const char* uartErr[] = {"FRAME_ERR", "PARITY_ERR", "UART_BREAK", "DATA_BREAK",
"BUFFER_FULL", "FIFO_OVF", "UART_DATA", "PATTERN_DET", "EVENT_MAX"};
if (xQueueReceive(uartQueue[uartNum], (void*)&uartEvent[uartNum], (TickType_t)portMAX_DELAY)) {
xSemaphoreTake(readMutex, portMAX_DELAY);
if (uartEvent[uartNum].type != UART_DATA) {
xQueueReset(uartQueue[uartNum]);
uart_flush_input((uart_port_t)(uartNum + uOffset));
LOG_ERR("%s uart unexpected event type: %s\n", uart[uartNum].uartName, uartErr[uartEvent[uartNum].type]);
} else {
// uart rx data available
byte tuyaByte[1];
while (uart_read_bytes((uart_port_t)(uartNum + uOffset), tuyaByte, 1, 20 / portTICK_PERIOD_MS)) {
uart_port_t otherUart = (uart_port_t)(uartNum ^ 0x01); // flip uart number
// forward to other uart if in sniffer mode
if (USE_SNIFFER) uart_write_bytes((uart_port_t)(otherUart + uOffset), tuyaByte, 1);
// format for processing
processTuyaByte(otherUart, tuyaByte[0]);
}
}
}
xSemaphoreGive(readMutex);
}
static void configureUart(uart_port_t uartNum) {
// configure parameters of UART driver
uart_config_t uart_config = {
.baud_rate = TUYA_BAUD_RATE,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
#if !(CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3)
.source_clk = UART_SCLK_REF_TICK,
#endif
};
// install the driver and configure pins
uart_driver_install((uart_port_t)(uartNum + uOffset), BUFF_LEN, BUFF_LEN, QUEUE_SIZE, &uartQueue[uartNum], 0);
uart_param_config((uart_port_t)(uartNum + uOffset), &uart_config);
uart_set_pin((uart_port_t)(uartNum + uOffset), uart[uartNum].txPin, uart[uartNum].rxPin, UART_RTS, UART_CTS);
}
static void mcuTask(void *arg) {
// controlling task for local device MCU
while (true) readUart((uart_port_t)0); // wait for data to arrive
}
static void wifiTask(void *arg) {
// controlling task for optional external wifi module
while (true) readUart((uart_port_t)1); // wait for data to arrive
}
void prepUarts() {
esp_log_level_set("*", ESP_LOG_NONE);
readMutex = xSemaphoreCreateMutex();
writeMutex = xSemaphoreCreateMutex();
uart[0].uartId = 'M';
uart[0].uartName = "MCU";
uart[0].txPin = MCU_TX_PIN;
uart[0].rxPin = MCU_RX_PIN;
uart[0].destName = "Wifi";
uart[1].uartId = 'W';
uart[1].uartName = "Wifi";
uart[1].txPin = WIFI_TX_PIN;
uart[1].rxPin = WIFI_RX_PIN;
uart[1].destName = "MCU";
if (USE_UART0) {
LOG_INF("detach UART0 from serial monitor");
delay(100);
monitorOpen = false;
uart_driver_delete(UART_NUM_0);
} else uOffset = 1;
configureUart((uart_port_t)0);
xTaskCreate(mcuTask, "mcuTask", 1024 * 8, NULL, 2, &mcuHandle);
if (USE_SNIFFER) {
configureUart((uart_port_t)1);
xTaskCreate(wifiTask, "wifiTask", 1024 * 4, NULL, 2, &wifiHandle);
}
xSemaphoreGive(readMutex);
xSemaphoreGive(writeMutex);
uartReady = true;
}
static int32_t getNumber(const char* consoleCmd, bool start = false) {
static char* endPtr;
if (start) endPtr = const_cast<char*>(consoleCmd + 1); // set to start of data
char* savePtr = endPtr;
int32_t dataItem = strtol(endPtr, &endPtr, 10);
if (endPtr == savePtr) {
if (endPtr - consoleCmd < strlen(consoleCmd)) LOG_ERR("Non numeric characters found: %s", consoleCmd);
return LONG_MIN;
}
return dataItem;
}
void processTuyaMsg(const char* wsMsg) {
// receive external Tuya commands from Web monitor or heartbeat task and format then for output
// DP based command input comprises: destination command DP_id data_type data (format depends on data_type)
// Non DP command input comprises: destination command data_as_individual_bytes
xSemaphoreTake(writeMutex, portMAX_DELAY);
uint8_t tuyaCmd[BUFF_LEN]; // numeric conversion of console command string
int uartNum;
if ((char)wsMsg[0] == uart[0].uartId) uartNum = 0;
else if ((char)wsMsg[0] == uart[1].uartId) uartNum = 1;
else {
if (strlen(wsMsg) > 1) LOG_ERR("Invalid command destination: %c, needs to be %c or %c\n", (char)wsMsg[0], uart[0].uartId, uart[1].uartId);
xSemaphoreGive(writeMutex);
return;
}
int idx = 5; // index to start of data section
tuyaCmd[3] = (uint8_t)(getNumber((const char*)wsMsg, true) & 0xFF); // command id
bool isDP = (tuyaCmd[3] == 6 || tuyaCmd[3] == 7) ? true : false;
if (isDP) {
tuyaCmd[6] = (uint8_t)(getNumber((const char*)wsMsg) & 0xFF); // datapoint id
tuyaCmd[7] = (uint8_t)(getNumber((const char*)wsMsg) & 0xFF); // data type
if (tuyaCmd[7] == 2) {
// decompose integer into big endian 4 bytes
int32_t intVal = getNumber((const char*)wsMsg);
for (int i = 0; i < 4; i++) tuyaCmd[13 - i] = intVal >> (8 * i);
idx = 13;
} else idx = 9; // all other types
}
// data part
int32_t thisNum;
while ((thisNum = getNumber((const char*)wsMsg)) != LONG_MIN) {
tuyaCmd[++idx] = (uint8_t)(thisNum & 0xFF);
}
// derive rest of tuya command
tuyaCmd[0] = 0x55; // header
tuyaCmd[1] = 0xaa; // header
tuyaCmd[2] = uartNum == 0 ? 0x00 : 0x03; // wifi sends version 0, mcu sends version 3
tuyaCmd[4] = (uint8_t)((idx - 5) >> 8); // high byte of data length
tuyaCmd[5] = (uint8_t)((idx - 5) & 0xFF); // low byte of data length
if (isDP) {
// datapoint data length
tuyaCmd[8] = (uint8_t)((idx - 9) >> 8); // high byte of data length
tuyaCmd[9] = (uint8_t)((idx - 9) & 0xFF); // low byte of data length
}
tuyaCmd[++idx] = 0; // checksum is modulo 256 of command content summation
for (int i = 0; i < idx; i++) tuyaCmd[idx] += tuyaCmd[i];
// send tuya command to selected uart
int tuyaWrote = uart_write_bytes((uart_port_t)(uartNum + uOffset), tuyaCmd, idx + 1);
if (tuyaWrote == idx + 1) formatTuya(uartNum, (const byte*)tuyaCmd, tuyaWrote, false);
else LOG_WRN("Uart %d wrote %d, expected %d", uartNum, tuyaWrote, idx+1);
xSemaphoreGive(writeMutex);
}