-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathcreate_lmdb_vimeo90k.py
144 lines (131 loc) · 4.61 KB
/
create_lmdb_vimeo90k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Create LMDB for the training set of Vimeo-90K.
GT: 64,612 training sequences out of 91701 7-frame sequences.
LQ: HM16.5-intra-compressed sequences.
key: assigned from 00000 to 99999.
Sym-link Vimeo-90K dataset root to ./data/vimeo90k folder.
"""
import argparse
import os
import glob
import yaml
import os.path as op
from utils import make_y_lmdb_from_yuv
parser = argparse.ArgumentParser()
parser.add_argument(
'--opt_path', type=str, default='option_R3_vimeo90k_4G.yml',
help='Path to option YAML file.'
)
args = parser.parse_args()
yml_path = args.opt_path
radius = 3 # must be 3!!! otherwise, you should change dataset.py
def create_lmdb_for_vimeo90k():
# video info
with open(yml_path, 'r') as fp:
fp = yaml.load(fp, Loader=yaml.FullLoader)
root_dir = fp['dataset']['root']
gt_folder = fp['dataset']['train']['gt_folder']
lq_folder = fp['dataset']['train']['lq_folder']
gt_path = fp['dataset']['train']['gt_path']
lq_path = fp['dataset']['train']['lq_path']
meta_path = fp['dataset']['train']['meta_path']
gt_dir = op.join(root_dir, gt_folder)
lq_dir = op.join(root_dir, lq_folder)
lmdb_gt_path = op.join(root_dir, gt_path)
lmdb_lq_path = op.join(root_dir, lq_path)
meta_path = op.join(root_dir, meta_path)
# scan all videos
print('Scaning meta list...')
gt_video_list = []
lq_video_list = []
meta_fp = open(meta_path, 'r')
while True:
new_line = meta_fp.readline().split('\n')[0]
if new_line == '':
break
vid_name = new_line.split('/')[0] + '_' + new_line.split('/')[1]
qt_path = op.join(
gt_dir, vid_name + '.yuv'
)
gt_video_list.append(qt_path)
lq_path = op.join(
lq_dir, vid_name + '.yuv'
)
lq_video_list.append(lq_path)
msg = f'> {len(gt_video_list)} videos found.'
print(msg)
# generate LMDB for GT
print("Scaning GT frames (only center frames of each sequence)...")
frm_list = []
for gt_video_path in gt_video_list:
nfs = 7
num_seq = nfs // (2 * radius + 1)
frm_list.append([radius + iter_seq * (2 * radius + 1) for iter_seq in range(num_seq)])
num_frm_total = sum([len(frms) for frms in frm_list])
msg = f'> {num_frm_total} frames found.'
print(msg)
key_list = []
video_path_list = []
index_frame_list = []
for iter_vid in range(len(gt_video_list)):
frms = frm_list[iter_vid]
for iter_frm in range(len(frms)):
key_list.append('{:03d}/{:03d}/im4.png'.format(iter_vid+1, iter_frm+1))
video_path_list.append(gt_video_list[iter_vid])
index_frame_list.append(frms[iter_frm])
print("Writing LMDB for GT data...")
make_y_lmdb_from_yuv(
video_path_list=video_path_list,
yuv_type='444p',
h=256,
w=448,
index_frame_list=index_frame_list,
key_list=key_list,
lmdb_path=lmdb_gt_path,
multiprocessing_read=True,
)
print("> Finish.")
# generate LMDB for LQ
print("Scaning LQ frames...")
len_input = 2 * radius + 1
frm_list = []
for lq_video_path in lq_video_list:
nfs = 7
num_seq = nfs // len_input
frm_list.append([list(range(iter_seq * len_input, (iter_seq + 1) \
* len_input)) for iter_seq in range(num_seq)])
num_frm_total = sum([len(frms) * len_input for frms in frm_list])
msg = f'> {num_frm_total} frames found.'
print(msg)
key_list = []
video_path_list = []
index_frame_list = []
for iter_vid in range(len(lq_video_list)):
frm_seq = frm_list[iter_vid]
for iter_seq in range(len(frm_seq)):
key_list.extend(['{:03d}/{:03d}/im{:d}.png'.format(iter_vid+1, \
iter_seq+1, i) for i in range(1, len_input+1)])
video_path_list.extend([lq_video_list[iter_vid]] * len_input)
index_frame_list.extend(frm_seq[iter_seq])
print("Writing LMDB for LQ data...")
make_y_lmdb_from_yuv(
video_path_list=video_path_list,
yuv_type='444p',
h=256,
w=448,
index_frame_list=index_frame_list,
key_list=key_list,
lmdb_path=lmdb_lq_path,
multiprocessing_read=True,
)
print("> Finish.")
# sym-link
if not op.exists('data/vimeo90k'):
if not op.exists('data/'):
os.system("mkdir data/")
os.system(f"ln -s {root_dir} ./data/vimeo90k")
print("Sym-linking done.")
else:
print("data/vimeo90k already exists.")
if __name__ == '__main__':
create_lmdb_for_vimeo90k()