-
Notifications
You must be signed in to change notification settings - Fork 538
/
Copy pathembedding.py
361 lines (294 loc) · 10.1 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Joint image-sentence embedding space
"""
import theano
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import cPickle as pkl
import numpy
import nltk
from collections import OrderedDict, defaultdict
from scipy.linalg import norm
def load_model(path_to_model):
"""
Load all model components
"""
# Load the worddict
with open('%s.dictionary.pkl'%path_to_model, 'rb') as f:
worddict = pkl.load(f)
# Create inverted dictionary
word_idict = dict()
for kk, vv in worddict.iteritems():
word_idict[vv] = kk
word_idict[0] = '<eos>'
word_idict[1] = 'UNK'
# Load model options
with open('%s.pkl'%path_to_model, 'rb') as f:
options = pkl.load(f)
# Load parameters
params = init_params(options)
params = load_params(path_to_model, params)
tparams = init_tparams(params)
# Extractor functions
trng = RandomStreams(1234)
trng, [x, x_mask], sentences = build_sentence_encoder(tparams, options)
f_senc = theano.function([x, x_mask], sentences, name='f_senc')
trng, [im], images = build_image_encoder(tparams, options)
f_ienc = theano.function([im], images, name='f_ienc')
# Store everything we need in a dictionary
model = {}
model['options'] = options
model['worddict'] = worddict
model['word_idict'] = word_idict
model['f_senc'] = f_senc
model['f_ienc'] = f_ienc
return model
def encode_sentences(model, X, verbose=False, batch_size=128):
"""
Encode sentences into the joint embedding space
"""
features = numpy.zeros((len(X), model['options']['dim']), dtype='float32')
# length dictionary
ds = defaultdict(list)
captions = [s.split() for s in X]
for i,s in enumerate(captions):
ds[len(s)].append(i)
# quick check if a word is in the dictionary
d = defaultdict(lambda : 0)
for w in model['worddict'].keys():
d[w] = 1
# Get features. This encodes by length, in order to avoid wasting computation
for k in ds.keys():
if verbose:
print k
numbatches = len(ds[k]) / batch_size + 1
for minibatch in range(numbatches):
caps = ds[k][minibatch::numbatches]
caption = [captions[c] for c in caps]
seqs = []
for i, cc in enumerate(caption):
seqs.append([model['worddict'][w] if d[w] > 0 and model['worddict'][w] < model['options']['n_words'] else 1 for w in cc])
x = numpy.zeros((k+1, len(caption))).astype('int64')
x_mask = numpy.zeros((k+1, len(caption))).astype('float32')
for idx, s in enumerate(seqs):
x[:k,idx] = s
x_mask[:k+1,idx] = 1.
ff = model['f_senc'](x, x_mask)
for ind, c in enumerate(caps):
features[c] = ff[ind]
return features
def encode_images(model, IM):
"""
Encode images into the joint embedding space
"""
images = model['f_ienc'](IM)
return images
def _p(pp, name):
"""
make prefix-appended name
"""
return '%s_%s'%(pp, name)
def init_tparams(params):
"""
initialize Theano shared variables according to the initial parameters
"""
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
def load_params(path, params):
"""
load parameters
"""
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
warnings.warn('%s is not in the archive'%kk)
continue
params[kk] = pp[kk]
return params
# layers: 'name': ('parameter initializer', 'feedforward')
layers = {'ff': ('param_init_fflayer', 'fflayer'),
'gru': ('param_init_gru', 'gru_layer')}
def get_layer(name):
fns = layers[name]
return (eval(fns[0]), eval(fns[1]))
def init_params(options):
"""
Initialize all parameters
"""
params = OrderedDict()
# Word embedding
params['Wemb'] = norm_weight(options['n_words'], options['dim_word'])
# Sentence encoder
params = get_layer(options['encoder'])[0](options, params, prefix='encoder',
nin=options['dim_word'], dim=options['dim'])
# Image encoder
params = get_layer('ff')[0](options, params, prefix='ff_image', nin=options['dim_image'], nout=options['dim'])
return params
def build_sentence_encoder(tparams, options):
"""
Encoder only, for sentences
"""
opt_ret = dict()
trng = RandomStreams(1234)
# description string: #words x #samples
x = tensor.matrix('x', dtype='int64')
mask = tensor.matrix('x_mask', dtype='float32')
n_timesteps = x.shape[0]
n_samples = x.shape[1]
# Word embedding
emb = tparams['Wemb'][x.flatten()].reshape([n_timesteps, n_samples, options['dim_word']])
# Encode sentences
proj = get_layer(options['encoder'])[1](tparams, emb, None, options,
prefix='encoder',
mask=mask)
sents = proj[0][-1]
sents = l2norm(sents)
return trng, [x, mask], sents
def build_image_encoder(tparams, options):
"""
Encoder only, for images
"""
opt_ret = dict()
trng = RandomStreams(1234)
# image features
im = tensor.matrix('im', dtype='float32')
# Encode images
images = get_layer('ff')[1](tparams, im, options, prefix='ff_image', activ='linear')
images = l2norm(images)
return trng, [im], images
def linear(x):
"""
Linear activation function
"""
return x
def tanh(x):
"""
Tanh activation function
"""
return tensor.tanh(x)
def l2norm(X):
"""
Compute L2 norm, row-wise
"""
norm = tensor.sqrt(tensor.pow(X, 2).sum(1))
X /= norm[:, None]
return X
def ortho_weight(ndim):
"""
Orthogonal weight init, for recurrent layers
"""
W = numpy.random.randn(ndim, ndim)
u, s, v = numpy.linalg.svd(W)
return u.astype('float32')
def norm_weight(nin,nout=None, scale=0.1, ortho=True):
"""
Uniform initalization from [-scale, scale]
If matrix is square and ortho=True, use ortho instead
"""
if nout == None:
nout = nin
if nout == nin and ortho:
W = ortho_weight(nin)
else:
W = numpy.random.uniform(low=-scale, high=scale, size=(nin, nout))
return W.astype('float32')
def xavier_weight(nin,nout=None):
"""
Xavier init
"""
if nout == None:
nout = nin
r = numpy.sqrt(6.) / numpy.sqrt(nin + nout)
W = numpy.random.rand(nin, nout) * 2 * r - r
return W.astype('float32')
# Feedforward layer
def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True):
"""
Affine transformation + point-wise nonlinearity
"""
if nin == None:
nin = options['dim_proj']
if nout == None:
nout = options['dim_proj']
params[_p(prefix,'W')] = xavier_weight(nin, nout)
params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32')
return params
def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs):
"""
Feedforward pass
"""
return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')])
# GRU layer
def param_init_gru(options, params, prefix='gru', nin=None, dim=None):
"""
Gated Recurrent Unit (GRU)
"""
if nin == None:
nin = options['dim_proj']
if dim == None:
dim = options['dim_proj']
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32')
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
Wx = norm_weight(nin, dim)
params[_p(prefix,'Wx')] = Wx
Ux = ortho_weight(dim)
params[_p(prefix,'Ux')] = Ux
params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32')
return params
def gru_layer(tparams, state_below, init_state, options, prefix='gru', mask=None, one_step=False, **kwargs):
"""
Feedforward pass through GRU
"""
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
dim = tparams[_p(prefix,'Ux')].shape[1]
if init_state == None:
init_state = tensor.alloc(0., n_samples, dim)
if mask == None:
mask = tensor.alloc(1., state_below.shape[0], 1)
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
return _x[:, n*dim:(n+1)*dim]
state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]
state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')]
U = tparams[_p(prefix, 'U')]
Ux = tparams[_p(prefix, 'Ux')]
def _step_slice(m_, x_, xx_, h_, U, Ux):
preact = tensor.dot(h_, U)
preact += x_
r = tensor.nnet.sigmoid(_slice(preact, 0, dim))
u = tensor.nnet.sigmoid(_slice(preact, 1, dim))
preactx = tensor.dot(h_, Ux)
preactx = preactx * r
preactx = preactx + xx_
h = tensor.tanh(preactx)
h = u * h_ + (1. - u) * h
h = m_[:,None] * h + (1. - m_)[:,None] * h_
return h
seqs = [mask, state_below_, state_belowx]
_step = _step_slice
if one_step:
rval = _step(*(seqs+[init_state, tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]]))
else:
rval, updates = theano.scan(_step,
sequences=seqs,
outputs_info = [init_state],
non_sequences = [tparams[_p(prefix, 'U')],
tparams[_p(prefix, 'Ux')]],
name=_p(prefix, '_layers'),
n_steps=nsteps,
profile=False,
strict=True)
rval = [rval]
return rval