-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·472 lines (381 loc) · 20.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
'''
Main application script for tagging parts-of-speech and morphosyntactic tags. Run with --help for command line arguments.
'''
from collections import Counter
from _collections import defaultdict
from evaluate_morphotags import Evaluator
import AsymBiLSTM
import test
import collections
import argparse
import random
import pickle
import logging
import progressbar
import os
import sys
import dynet_config
import dynet as dy
import numpy as np
import utils
from utils import NONE_TAG, POS_KEY, Instance
__author__ = "Yuval Pinter and Robert Guthrie, 2017. Modified Marc Marone, 2018"
DEFAULT_WORD_EMBEDDING_SIZE = 64
DEFAULT_CHAR_EMBEDDING_SIZE = 256
normalized_words = collections.Counter()
class LSTMTagger:
'''
Joint POS/morphosyntactic attribute tagger based on LSTM.
Embeddings are fed into Bi-LSTM layers, then hidden phases are fed into an MLP for each attribute type (including POS tags).
Class "inspired" by Dynet's BiLSTM tagger tutorial script available at:
https://github.com/clab/dynet_tutorial_examples/blob/master/tutorial_bilstm_tagger.py
'''
def __init__(self, tagset_sizes, num_lstm_layers, hidden_dim, word_level_dim, charset_size, char_embedding_dim):
'''
:param tagset_sizes: dictionary of attribute_name:number_of_possible_tags
:param num_lstm_layers: number of layers in the word level LSTM
:param hidden_dim: dimension of the character level LSTM. If tuple, the character embedder will be asymmetric.
:param word_level_dim: dimension of the word level LSTM
:param charset_size: number of characters expected in dataset (needed for character embedding initialization)
:param char_embedding_dim: desired character embedding dimension
'''
self.model = dy.Model()
self.tagset_sizes = tagset_sizes
self.attributes = tagset_sizes.keys()
# Char LSTM Parameters
self.char_lookup = self.model.add_lookup_parameters((charset_size, char_embedding_dim), name="ce")
logging.info("char bilstm: char_embedding_dim {} hidden {}".format(char_embedding_dim, hidden_dim))
self.char_bi_lstm = AsymBiLSTM.AsymBiRNNBuilder(1, char_embedding_dim, hidden_dim, self.model, dy.LSTMBuilder)
if type(hidden_dim) == int:
input_dim = hidden_dim
else:
input_dim = sum(hidden_dim)
logging.info("word bilstm: input_dim {} word_level_dim {}".format(input_dim, word_level_dim))
self.word_bi_lstm = dy.BiRNNBuilder(num_lstm_layers, input_dim, word_level_dim, self.model, dy.LSTMBuilder)
# Matrix that maps from Bi-LSTM output to num tags
self.lstm_to_tags_params = {}
self.lstm_to_tags_bias = {}
self.mlp_out = {}
self.mlp_out_bias = {}
for att, set_size in tagset_sizes.items():
self.lstm_to_tags_params[att] = self.model.add_parameters((set_size, word_level_dim), name=att+"H")
self.lstm_to_tags_bias[att] = self.model.add_parameters(set_size, name=att+"Hb")
self.mlp_out[att] = self.model.add_parameters((set_size, set_size), name=att+"O")
self.mlp_out_bias[att] = self.model.add_parameters(set_size, name=att+"Ob")
def word_rep(self, char_ids):
"""
get the word level representation from a sequnce of character ids
"""
# only char representation, no word embeddings!
char_embs = [self.char_lookup[cid] for cid in char_ids]
return self.char_bi_lstm.final_hiddens(char_embs)
def build_tagging_graph(self, word_chars):
dy.renew_cg()
all_embeddings = [self.word_rep(chars) for chars in word_chars]
embeddings, char_embeddings = list(zip(*all_embeddings))
lstm_out = self.word_bi_lstm.transduce(embeddings)
scores = {}
for att in self.attributes:
H = self.lstm_to_tags_params[att]
Hb = self.lstm_to_tags_bias[att]
O = self.mlp_out[att]
Ob = self.mlp_out_bias[att]
scores[att] = []
for rep in lstm_out:
score_t = O * dy.tanh(H * rep + Hb) + Ob
scores[att].append(score_t)
return scores, char_embeddings
def loss(self, word_chars, tags_set):
'''
For use in training phase.
Tag sentence (all attributes) and compute loss based on probability of expected tags.
'''
observations_set, _ = self.build_tagging_graph(word_chars)
errors = {}
for att, tags in tags_set.items():
err = []
for obs, tag in zip(observations_set[att], tags):
err_t = dy.pickneglogsoftmax(obs, tag)
err.append(err_t)
errors[att] = dy.esum(err)
return errors
def tag_sentence(self, word_chars):
'''
For use in testing phase.
Tag sentence and return tags for each attribute, without caluclating loss.
'''
observations_set, char_embeddings = self.build_tagging_graph(word_chars)
tag_seqs = {}
for att, observations in observations_set.items():
observations = [ dy.softmax(obs) for obs in observations ]
probs = [ obs.npvalue() for obs in observations ]
tag_seq = []
for prob in probs:
tag_t = np.argmax(prob)
tag_seq.append(tag_t)
tag_seqs[att] = tag_seq
return tag_seqs, char_embeddings
def set_dropout(self, p):
self.word_bi_lstm.set_dropout(p)
def disable_dropout(self):
self.word_bi_lstm.disable_dropout()
def save(self, file_name):
'''
Serialize model parameters for future loading and use.
'''
self.model.save(file_name)
with open(file_name + "-atts", 'w') as attdict:
attdict.write("\t".join(sorted(self.attributes)))
class ProcessedDataset:
def __init__(self, dataset_path, training_sentence_size=None, token_size=None):
dataset = pickle.load(open(dataset_path, "rb"))
self.dataset = dataset
self.w2i = dataset["w2i"]
self.t2is = dataset["t2is"]
self.c2i = dataset["c2i"]
self.i2w = { i: w for w, i in self.w2i.items()} # Inverse mapping
self.i2ts = { att: {i: t for t, i in t2i.items()} for att, t2i in self.t2is.items()}
self.i2c = { i: c for c, i in self.c2i.items()}
self.training_instances = dataset["training_instances"]
self.training_vocab = dataset["training_vocab"]
self.dev_instances = dataset["dev_instances"]
self.dev_vocab = dataset["dev_vocab"]
self.test_instances = dataset["test_instances"]
# trim training set for size evaluation (sentence based)
if training_sentence_size is not None and len(self.training_instances) > training_sentence_size:
random.shuffle(self.training_instances)
self.training_instances = self.training_instances[:training_sentence_size]
# trim training set for size evaluation (token based)
training_corpus_size = sum(self.training_vocab.values())
if token_size is not None and training_corpus_size > token_size:
random.shuffle(self.training_instances)
cumulative_tokens = 0
cutoff_index = -1
for i,inst in enumerate(self.training_instances):
cumulative_tokens += len(inst.sentence)
if cumulative_tokens >= token_size:
self.training_instances = self.training_instances[:i+1]
break
self.tag_set_sizes = {att: len(t2i) for att, t2i in list(self.t2is.items())}
def get_all_params(self):
"""
Simplify model wrapping
"""
return self.w2i, self.t2is, self.c2i, \
self.i2w, self.i2ts, self.i2c, \
self.training_instances, self.training_vocab, \
self.dev_instances, self.dev_vocab, \
self.test_instances, self.tag_set_sizes
def instance_to_sentence(self, instance):
return ' '.join([self.i2w[i] for i in instance.sentence])
### END OF CLASSES ###
if __name__ == "__main__":
print("setting python internal rand seed=1")
random.seed(1)
# ===-----------------------------------------------------------------------===
# Argument parsing
# ===-----------------------------------------------------------------------===
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", required=True, dest="dataset", help=".pkl file to use")
parser.add_argument("--num-epochs", default=20, dest="num_epochs", type=int, help="Number of full passes through training set (default - 20)")
parser.add_argument("--num-lstm-layers", default=2, dest="lstm_layers", type=int, help="Number of LSTM layers (default - 2)")
parser.add_argument("--hidden-dim", default=128, dest="hidden_dim", type=int, help="Size of LSTM hidden layers (default - 128)")
parser.add_argument("--word-level-dim", default=None, dest="word_level_dim", type=int, help="Size of the word level LSTM hidden layers (defaults to --hidden-dim)")
parser.add_argument("--forward-dim", default = None, dest="forward_dim", type=int, help="Number of forward units in character rnn")
parser.add_argument("--backward-dim", default = None, dest="backward_dim", type=int, help="Number of backward units in character rnn")
parser.add_argument("--training-sentence-size", default=None, dest="training_sentence_size", type=int, help="Instance count of training set (default - unlimited)")
parser.add_argument("--token-size", default=None, dest="token_size", type=int, help="Token count of training set (default - unlimited)")
parser.add_argument("--learning-rate", default=0.01, dest="learning_rate", type=float, help="Initial learning rate (default - 0.01)")
parser.add_argument("--dropout", default=-1, dest="dropout", type=float, help="Amount of dropout to apply to LSTM part of graph (default - off)")
parser.add_argument("--log-dir", default="log", dest="log_dir", help="Directory where to write logs / serialized models")
parser.add_argument("--no-model", dest="no_model", action="store_true", help="Don't serialize models")
parser.add_argument("--dynet-mem", help="Ignore this external argument")
parser.add_argument("--debug", dest="debug", action="store_true", help="Debug mode")
parser.add_argument("--log-to-stdout", dest="log_to_stdout", action="store_true", help="Log to STDOUT")
parser.add_argument("--test", dest="test", action="store_true", help="enable test mode")
parser.add_argument("--seed", default=1, type=int, help="dynet random seed")
options = parser.parse_args()
#validate params
if options.forward_dim is not None and options.backward_dim is not None:
print("Asym parameters set")
options.hidden_dim = (options.forward_dim, options.backward_dim)
if not options.word_level_dim:
if type(options.hidden_dim) == int:
options.word_level_dim = options.hidden_dim
else:
#if we are using an asym bilstm
options.word_level_dim = sum(options.hidden_dim)
# ===-----------------------------------------------------------------------===
# Set up logging
# ===-----------------------------------------------------------------------===
if not os.path.exists(options.log_dir):
os.mkdir(options.log_dir)
if options.log_to_stdout:
logging.basicConfig(level=logging.INFO)
else:
logging.basicConfig(filename=options.log_dir + "/log.txt", filemode="w", format="%(message)s", level=logging.INFO)
train_dev_cost = utils.CSVLogger(options.log_dir + "/train_dev.log", ["Train.cost", "Dev.cost"])
# ===-----------------------------------------------------------------------===
# Log run parameters
# ===-----------------------------------------------------------------------===
logging.info(options)
logging.info(
"""
Dataset: {dataset}
Num Epochs: {epochs}
LSTM: {layers} layers, {hidden} hidden dim, {word} word level dim
Training set size limit: {sent} sentences or {tokes} tokens
Initial Learning Rate: {lr}
Dropout: {dropout}
""".format(
dataset=options.dataset,
epochs=options.num_epochs,
layers=options.lstm_layers,
hidden=options.hidden_dim,
word=options.word_level_dim,
sent=options.training_sentence_size,
tokes=options.token_size,
lr=options.learning_rate,
dropout=options.dropout)
)
# after reading the seed from options, import dynet and other dynet dependent modules
print("reseting dynet seed to {}".format(options.seed))
dy.reset_random_seed(options.seed)
if options.debug:
print("DEBUG MODE")
# ===-----------------------------------------------------------------------===
# Read in dataset
# ===-----------------------------------------------------------------------===
processed_dataset = ProcessedDataset(options.dataset,
options.training_sentence_size,
options.token_size)
w2i, t2is, c2i, i2w, i2ts, i2c, \
training_instances, training_vocab, \
dev_instances, dev_vocab, test_instances, tag_set_sizes = processed_dataset.get_all_params()
# ===-----------------------------------------------------------------------===
# Build model and trainer
# ===-----------------------------------------------------------------------===
model = LSTMTagger(tagset_sizes=tag_set_sizes,
num_lstm_layers=options.lstm_layers,
hidden_dim=options.hidden_dim,
word_level_dim=options.word_level_dim,
charset_size=len(c2i),
char_embedding_dim=DEFAULT_CHAR_EMBEDDING_SIZE)
trainer = dy.MomentumSGDTrainer(model.model, options.learning_rate, 0.9)
logging.info("Training Algorithm: {}".format(type(trainer)))
logging.info("Number training instances: {}".format(len(training_instances)))
logging.info("Number dev instances: {}".format(len(dev_instances)))
best_dev_pos = 0.0
old_best_name = None
for epoch in range(options.num_epochs):
bar = progressbar.ProgressBar()
# set up epoch
random.shuffle(training_instances)
train_loss = 0.0
if options.dropout > 0:
model.set_dropout(options.dropout)
# debug samples small set for faster full loop
if options.debug:
train_instances = training_instances[0:int(len(training_instances)/20)]
else:
train_instances = training_instances
# main training loop
for idx,instance in enumerate(bar(train_instances)):
if len(instance.sentence) == 0: continue
gold_tags = instance.tags
for att in model.attributes:
if att not in instance.tags:
# 'pad' entire sentence with none tags
gold_tags[att] = [t2is[att][NONE_TAG]] * len(instance.sentence)
word_chars = utils.get_word_chars(instance.sentence, i2w, c2i, normalized_words)
# calculate all losses for sentence
loss_exprs = model.loss(word_chars, gold_tags)
loss_expr = dy.esum(list(loss_exprs.values()))
loss = loss_expr.scalar_value()
# bail if loss is NaN
if np.isnan(loss):
assert False, "NaN occurred"
train_loss += (loss / len(instance.sentence))
# backward pass and parameter update
loss_expr.backward()
trainer.update()
# log epoch's train phase
logging.info("\n")
logging.info("Epoch {} complete".format(epoch + 1))
# here used to be a learning rate update, no longer supported in dynet 2.0
print(trainer.status())
train_loss = train_loss / len(train_instances)
# evaluate dev data
if options.debug:
d_instances = dev_instances[0:int(len(dev_instances)/10)]
else:
d_instances = dev_instances
model.disable_dropout()
# with open("{}/devout_epoch-{:02d}.txt".format(options.log_dir, epoch + 1), 'w') as dev_writer:
#todo write things out
results = test.evaluate_raw(model, d_instances, t2is, c2i, i2w, i2ts, training_vocab, use_bar=True)
logging.info("POS Dev Accuracy: {}".format(results['pos_acc']))
logging.info("POS % OOV accuracy: {}".format(results['pos_oov_accuracy']))
logging.info("POS % Wrong that are OOV: {}".format(results['pos_wrong_oov']))
for attr in results['f1_scores']:
if attr != POS_KEY:
logging.info("{} F1: {}".format(attr, results['f1_scores'][attr]))
logging.info("Total attribute F1s: {} micro, {} macro, POS included = {}".format(results['micro_f1'], results['macro_f1'], False))
logging.info("Total dev tokens: {}, Total dev OOV: {}, % OOV: {}".format(results['total_tokens'],
results['total_oov'],
results['oov_percent']))
logging.info("Train Loss: {}".format(train_loss))
logging.info("Dev Loss: {}".format(results['loss']))
train_dev_cost.add_column([train_loss, results['loss']])
#after the first epoch, log out the normalized words
if epoch == 0:
logging.info("Writing {} normalized words".format(len(normalized_words.keys())))
with open("{}/normalized_words.txt".format(options.log_dir), 'w') as f:
for word, count in normalized_words.most_common():
f.write("{} {}\n".format(word, count))
# if epoch > 1 and epoch % 10 != 0: # leave outputs from epochs 1,10,20, etc.
# old_devout_file_name = "{}/devout_epoch-{:02d}.txt".format(options.log_dir, epoch)
# os.remove(old_devout_file_name)
# write best model by dev pos accuracy in addition to periodic writeouts
dev_pos_accuracy = results['pos_acc']
if dev_pos_accuracy > best_dev_pos:
print("{:.4f} > {:.4f}, writing new best dev model".format(dev_pos_accuracy * 100, best_dev_pos * 100))
best_dev_pos = dev_pos_accuracy
#remove old best
if old_best_name:
os.remove(old_best_name)
os.remove(old_best_name + "-atts")
new_model_file_name = "{}/best_model_epoch-{:02d}-{:.4f}.bin".format(options.log_dir, epoch + 1, dev_pos_accuracy)
model.save(new_model_file_name)
old_best_name = new_model_file_name
# serialize model
if not options.no_model:
new_model_file_name = "{}/model_epoch-{:02d}.bin".format(options.log_dir, epoch + 1)
logging.info("Saving model to {}".format(new_model_file_name))
model.save(new_model_file_name)
if epoch > 1 and epoch % 10 != 0: # leave models from epochs 1,10,20, etc.
logging.info("Removing files from previous epoch.")
old_model_file_name = "{}/model_epoch-{:02d}.bin".format(options.log_dir, epoch)
os.remove(old_model_file_name)
os.remove(old_model_file_name + "-atts")
# epoch loop ends
# evaluate test data (once)
logging.info("\n")
logging.info("Number test instances: {}".format(len(test_instances)))
model.disable_dropout()
if options.debug:
t_instances = test_instances[0:int(len(test_instances)/10)]
else:
t_instances = test_instances
results = test.evaluate_raw(model, t_instances, t2is, c2i, i2w, i2ts, training_vocab, use_bar=True)
# log test results
logging.info("POS Test Accuracy: {}".format(results['pos_acc']))
logging.info("POS % Test OOV accuracy: {}".format(results['pos_oov_accuracy']))
logging.info("POS % Test Wrong that are OOV: {}".format(results['pos_wrong_oov']))
for attr in results['f1_scores']:
if attr != POS_KEY:
logging.info("{} F1: {}".format(attr, results['f1_scores'][attr]))
logging.info("Total attribute F1s: {} micro, {} macro, POS included = {}".format(results['micro_f1'], results['macro_f1'], False))
logging.info("Total test tokens: {}, Total test OOV: {}, % OOV: {}".format(results['total_tokens'],
results['total_oov'],
results['oov_percent']))