forked from hermidalc/sklearn-extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base.py
42 lines (32 loc) · 1.36 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""Base classes for all estimators."""
# Authors: Gael Varoquaux <[email protected]>
# Leandro Hermida <[email protected]>
# License: BSD 3 clause
from sklearn.base import TransformerMixin
class ExtendedTransformerMixin(TransformerMixin):
"""Mixin class for all transformers in scikit-learn."""
def fit_transform(self, X, y=None, **fit_params):
"""Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
**fit_params : dict
Additional fit parameters.
Returns
-------
X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
"""
# non-optimized default implementation; override when a better
# method is possible for a given clustering algorithm
if y is None:
# fit method of arity 1 (unsupervised transformation)
return self.fit(X, **fit_params).transform(X, **fit_params)
else:
# fit method of arity 2 (supervised transformation)
return self.fit(X, y, **fit_params).transform(X, **fit_params)