forked from jonsterling/agda-calf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMergeSortPar.agda
345 lines (321 loc) · 17 KB
/
MergeSortPar.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
{-# OPTIONS --prop --rewriting #-}
open import Examples.Sorting.Parallel.Comparable
module Examples.Sorting.Parallel.MergeSortPar (M : Comparable) where
open Comparable M
open import Examples.Sorting.Parallel.Core M
open import Calf costMonoid
open import Calf.ParMetalanguage parCostMonoid
open import Calf.Types.Nat
open import Calf.Types.List
open import Calf.Types.Bounded costMonoid
open import Calf.Types.BigO costMonoid
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning)
open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂)
open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_; _^_; ⌊_/2⌋; ⌈_/2⌉; _⊔_)
open import Data.Nat.Properties as N using (module ≤-Reasoning)
open import Data.Nat.Log2
open import Data.Nat.Square
open import Data.Nat.PredExp2
open import Examples.Sorting.Parallel.MergeSort.Split M public
open import Examples.Sorting.Parallel.MergeSortPar.Merge M public
sort/clocked : cmp (Π nat λ _ → Π (list A) λ _ → F (list A))
sort/clocked zero l = ret l
sort/clocked (suc k) l =
bind (F (list A)) (split l) λ (l₁ , l₂) →
bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge
sort/clocked/correct : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → SortResult (sort/clocked k) l
sort/clocked/correct zero l h u = l , refl , refl , short-sorted (⌈log₂n⌉≡0⇒n≤1 (N.n≤0⇒n≡0 h))
sort/clocked/correct (suc k) l h u =
let (l₁ , l₂ , ≡ , length₁ , length₂ , ↭) = split/correct l u in
let (l₁' , ≡₁ , ↭₁ , sorted₁) = sort/clocked/correct k l₁ (
let open ≤-Reasoning in
begin
⌈log₂ length l₁ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩
⌈log₂ ⌊ length l /2⌋ ⌉
≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎
) u in
let (l₂' , ≡₂ , ↭₂ , sorted₂) = sort/clocked/correct k l₂ (
let open ≤-Reasoning in
begin
⌈log₂ length l₂ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎
) u in
let (l' , ≡' , h-sorted) = merge/correct l₁' l₂' u
(↭' , sorted) = h-sorted sorted₁ sorted₂
in
l' , (
let open ≡-Reasoning in
begin
sort/clocked (suc k) l
≡⟨⟩
(bind (F (list A)) (split l) λ (l₁ , l₂) →
bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge)
≡⟨ Eq.cong (λ e → bind (F (list A)) e _) ≡ ⟩
bind (F (list A)) (sort/clocked k l₁ & sort/clocked k l₂) merge
≡⟨ Eq.cong (λ e → bind (F (list A)) e merge) (Eq.cong₂ _&_ ≡₁ ≡₂) ⟩
merge (l₁' , l₂')
≡⟨ ≡' ⟩
ret l'
∎
) , (
let open PermutationReasoning in
begin
l
↭⟨ ↭ ⟩
l₁ ++ l₂
↭⟨ ++⁺-↭ ↭₁ ↭₂ ⟩
l₁' ++ l₂'
↭⟨ ↭' ⟩
l'
∎
) , sorted
sort/clocked/cost : cmp (Π nat λ _ → Π (list A) λ _ → cost)
sort/clocked/cost zero l = 𝟘
sort/clocked/cost (suc k) l =
bind cost (split l) λ (l₁ , l₂) → split/cost l ⊕
bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕
merge/cost/closed (l₁' , l₂')
sort/clocked/cost/closed : cmp (Π nat λ _ → Π (list A) λ _ → cost)
sort/clocked/cost/closed k l = k * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²
sort/clocked/cost≤sort/clocked/cost/closed : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → ◯ (sort/clocked/cost k l ≤ₚ sort/clocked/cost/closed k l)
sort/clocked/cost≤sort/clocked/cost/closed zero l h u = z≤n , z≤n
sort/clocked/cost≤sort/clocked/cost/closed (suc k) l h u =
let (l₁ , l₂ , ≡ , length₁ , length₂ , ↭) = split/correct l u in
let h₁ : ⌈log₂ length l₁ ⌉ Nat.≤ k
h₁ =
let open ≤-Reasoning in
begin
⌈log₂ length l₁ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩
⌈log₂ ⌊ length l /2⌋ ⌉
≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎
h₂ : ⌈log₂ length l₂ ⌉ Nat.≤ k
h₂ =
let open ≤-Reasoning in
begin
⌈log₂ length l₂ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎
in
let (l₁' , ≡₁ , ↭₁ , sorted₁) = sort/clocked/correct k l₁ h₁ u in
let (l₂' , ≡₂ , ↭₂ , sorted₂) = sort/clocked/correct k l₂ h₂ u in
let open ≤ₚ-Reasoning in
begin
sort/clocked/cost (suc k) l
≡⟨⟩
(bind cost (split l) λ (l₁ , l₂) → split/cost l ⊕
bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕
merge/cost/closed (l₁' , l₂'))
≡⟨ Eq.cong (λ e → bind cost e _) (≡) ⟩
(split/cost l ⊕
bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕
merge/cost/closed (l₁' , l₂'))
≡⟨⟩
(𝟘 ⊕
bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕
merge/cost/closed (l₁' , l₂'))
≡⟨ ⊕-identityˡ _ ⟩
(bind cost (sort/clocked k l₁ & sort/clocked k l₂) λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕
merge/cost/closed (l₁' , l₂'))
≡⟨
Eq.cong (λ e → bind cost e λ (l₁' , l₂') → (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')) (
Eq.cong₂ _&_
≡₁
≡₂
)
⟩
(sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) ⊕ merge/cost/closed (l₁' , l₂')
≤⟨
⊕-monoˡ-≤ (merge/cost/closed (l₁' , l₂')) (
⊗-mono-≤
(sort/clocked/cost≤sort/clocked/cost/closed k l₁ h₁ u)
(sort/clocked/cost≤sort/clocked/cost/closed k l₂ h₂ u)
)
⟩
(sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕ merge/cost/closed (l₁' , l₂')
≡⟨⟩
(sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕
(pred[2^ ⌈log₂ suc (length l₁') ⌉ ] * ⌈log₂ suc (length l₂') ⌉ , ⌈log₂ suc (length l₁') ⌉ * ⌈log₂ suc (length l₂') ⌉)
≡˘⟨
Eq.cong ((sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕_) (
Eq.cong₂ (λ n₁ n₂ → pred[2^ ⌈log₂ suc n₁ ⌉ ] * ⌈log₂ suc n₂ ⌉ , ⌈log₂ suc n₁ ⌉ * ⌈log₂ suc n₂ ⌉)
(↭-length ↭₁)
(↭-length ↭₂)
)
⟩
(sort/clocked/cost/closed k l₁ ⊗ sort/clocked/cost/closed k l₂) ⊕
(pred[2^ ⌈log₂ suc (length l₁) ⌉ ] * ⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₁) ⌉ * ⌈log₂ suc (length l₂) ⌉)
≡⟨⟩
((k * length l₁ * ⌈log₂ suc ⌈ length l₁ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l₁ /2⌉ ⌉ ²) ⊗
(k * length l₂ * ⌈log₂ suc ⌈ length l₂ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l₂ /2⌉ ⌉ ²)) ⊕
(pred[2^ ⌈log₂ suc (length l₁) ⌉ ] * ⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₁) ⌉ * ⌈log₂ suc (length l₂) ⌉)
≡⟨
Eq.cong₂ (
λ n₁ n₂ →
((k * n₁ * ⌈log₂ suc ⌈ n₁ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ n₁ /2⌉ ⌉ ²) ⊗
(k * n₂ * ⌈log₂ suc ⌈ n₂ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ n₂ /2⌉ ⌉ ²)) ⊕
(pred[2^ ⌈log₂ suc (n₁) ⌉ ] * ⌈log₂ suc (n₂) ⌉ , ⌈log₂ suc (n₁) ⌉ * ⌈log₂ suc (n₂) ⌉)
)
length₁
length₂
⟩
((k * ⌊ length l /2⌋ * ⌈log₂ suc ⌈ ⌊ length l /2⌋ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ ⌊ length l /2⌋ /2⌉ ⌉ ²) ⊗
(k * ⌈ length l /2⌉ * ⌈log₂ suc ⌈ ⌈ length l /2⌉ /2⌉ ⌉ , k * ⌈log₂ suc ⌈ ⌈ length l /2⌉ /2⌉ ⌉ ²)) ⊕
(pred[2^ ⌈log₂ suc ⌊ length l /2⌋ ⌉ ] * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , ⌈log₂ suc ⌊ length l /2⌋ ⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉)
≤⟨
⊕-mono-≤
(
let h-⌊n/2⌋ = log₂-mono (s≤s (N.⌈n/2⌉-mono (N.⌊n/2⌋≤n (length l))))
h-⌈n/2⌉ = log₂-mono (s≤s (N.⌈n/2⌉-mono (N.⌈n/2⌉≤n (length l)))) in
⊗-mono-≤
(N.*-monoʳ-≤ (k * ⌊ length l /2⌋) h-⌊n/2⌋ , N.*-monoʳ-≤ k (²-mono h-⌊n/2⌋))
(N.*-monoʳ-≤ (k * ⌈ length l /2⌉) h-⌈n/2⌉ , N.*-monoʳ-≤ k (²-mono h-⌈n/2⌉))
)
(
let h = log₂-mono (s≤s (N.⌊n/2⌋≤⌈n/2⌉ (length l))) in
N.*-monoˡ-≤ ⌈log₂ suc ⌈ length l /2⌉ ⌉ (pred[2^]-mono h) ,
N.*-monoˡ-≤ ⌈log₂ suc ⌈ length l /2⌉ ⌉ h
)
⟩
((k * ⌊ length l /2⌋ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²) ⊗
(k * ⌈ length l /2⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²)) ⊕
(pred[2^ ⌈log₂ suc ⌈ length l /2⌉ ⌉ ] * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²)
≤⟨
arithmetic/work (length l) ,
(N.≤-reflexive (arithmetic/span (⌈log₂ suc ⌈ length l /2⌉ ⌉ ²)))
⟩
suc k * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉ , suc k * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²
≡⟨⟩
sort/clocked/cost/closed (suc k) l
∎
where
arithmetic/work : (n : ℕ) →
(k * ⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉)
+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
Nat.≤ suc k * n * ⌈log₂ suc ⌈ n /2⌉ ⌉
arithmetic/work n =
begin
(k * ⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉)
+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
≡⟨
Eq.cong
(_+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉)
(Eq.cong₂ _+_
(N.*-assoc k ⌊ n /2⌋ ⌈log₂ suc ⌈ n /2⌉ ⌉)
(N.*-assoc k ⌈ n /2⌉ ⌈log₂ suc ⌈ n /2⌉ ⌉))
⟩
(k * (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉) + k * (⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉))
+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
≡˘⟨
Eq.cong (_+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉) (
N.*-distribˡ-+ k (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉) (⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉)
)
⟩
k * (⌊ n /2⌋ * ⌈log₂ suc ⌈ n /2⌉ ⌉ + ⌈ n /2⌉ * ⌈log₂ suc ⌈ n /2⌉ ⌉)
+ pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
≡˘⟨
Eq.cong
(λ m → k * m + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉)
(N.*-distribʳ-+ ⌈log₂ suc ⌈ n /2⌉ ⌉ ⌊ n /2⌋ ⌈ n /2⌉)
⟩
k * ((⌊ n /2⌋ + ⌈ n /2⌉) * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
≡⟨
Eq.cong
(λ m → k * (m * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉)
(N.⌊n/2⌋+⌈n/2⌉≡n n)
⟩
k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) + pred[2^ ⌈log₂ suc ⌈ n /2⌉ ⌉ ] * ⌈log₂ suc ⌈ n /2⌉ ⌉
≤⟨ N.+-monoʳ-≤ (k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)) (N.*-monoˡ-≤ ⌈log₂ suc ⌈ n /2⌉ ⌉ (pred[2^log₂] n)) ⟩
k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) + n * ⌈log₂ suc ⌈ n /2⌉ ⌉
≡⟨ N.+-comm (k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)) (n * ⌈log₂ suc ⌈ n /2⌉ ⌉) ⟩
n * ⌈log₂ suc ⌈ n /2⌉ ⌉ + k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)
≡⟨⟩
suc k * (n * ⌈log₂ suc ⌈ n /2⌉ ⌉)
≡˘⟨ N.*-assoc (suc k) n ⌈log₂ suc ⌈ n /2⌉ ⌉ ⟩
suc k * n * ⌈log₂ suc ⌈ n /2⌉ ⌉
∎
where open ≤-Reasoning
arithmetic/span : (n : ℕ) → ((k * n) ⊔ (k * n)) + n ≡ suc k * n
arithmetic/span n =
begin
((k * n) ⊔ (k * n)) + n
≡⟨ Eq.cong (_+ n) (N.⊔-idem (k * n)) ⟩
k * n + n
≡⟨ N.+-comm (k * n) n ⟩
n + k * n
≡⟨⟩
suc k * n
∎
where open ≡-Reasoning
sort/clocked≤sort/clocked/cost : ∀ k l → IsBounded (list A) (sort/clocked k l) (sort/clocked/cost k l)
sort/clocked≤sort/clocked/cost zero l = bound/ret
sort/clocked≤sort/clocked/cost (suc k) l =
bound/bind (split/cost l) _ (split≤split/cost l) λ (l₁ , l₂) →
bound/bind (sort/clocked/cost k l₁ ⊗ sort/clocked/cost k l₂) _ (bound/par (sort/clocked≤sort/clocked/cost k l₁) (sort/clocked≤sort/clocked/cost k l₂)) λ (l₁' , l₂') →
merge≤merge/cost/closed l₁' l₂'
sort/clocked≤sort/clocked/cost/closed : ∀ k l → ⌈log₂ length l ⌉ Nat.≤ k → IsBounded (list A) (sort/clocked k l) (sort/clocked/cost/closed k l)
sort/clocked≤sort/clocked/cost/closed k l h = bound/relax (sort/clocked/cost≤sort/clocked/cost/closed k l h) (sort/clocked≤sort/clocked/cost k l)
sort/depth : cmp (Π (list A) λ _ → meta ℕ)
sort/depth l = ⌈log₂ length l ⌉
sort : cmp (Π (list A) λ _ → F (list A))
sort l = sort/clocked (sort/depth l) l
sort/correct : IsSort sort
sort/correct l = sort/clocked/correct (sort/depth l) l N.≤-refl
sort/cost : cmp (Π (list A) λ _ → cost)
sort/cost l = sort/clocked/cost (sort/depth l) l
sort/cost/closed : cmp (Π (list A) λ _ → cost)
sort/cost/closed l = sort/clocked/cost/closed (sort/depth l) l
sort≤sort/cost : ∀ l → IsBounded (list A) (sort l) (sort/cost l)
sort≤sort/cost l = sort/clocked≤sort/clocked/cost (sort/depth l) l
sort≤sort/cost/closed : ∀ l → IsBounded (list A) (sort l) (sort/cost/closed l)
sort≤sort/cost/closed l = sort/clocked≤sort/clocked/cost/closed (sort/depth l) l N.≤-refl
sort/asymptotic : given (list A) measured-via length , sort ∈𝓞(λ n → n * ⌈log₂ n ⌉ ² , ⌈log₂ n ⌉ ^ 3)
sort/asymptotic = 2 ≤n⇒f[n]≤g[n]via λ l h →
bound/relax
(λ u → let open ≤-Reasoning in
(
begin
⌈log₂ length l ⌉ * length l * ⌈log₂ suc ⌈ length l /2⌉ ⌉
≤⟨ N.*-monoʳ-≤ (⌈log₂ length l ⌉ * length l) (lemma (length l) h) ⟩
⌈log₂ length l ⌉ * length l * ⌈log₂ length l ⌉
≡⟨ N.*-assoc ⌈log₂ length l ⌉ (length l) ⌈log₂ length l ⌉ ⟩
⌈log₂ length l ⌉ * (length l * ⌈log₂ length l ⌉)
≡⟨ N.*-comm ⌈log₂ length l ⌉ (length l * ⌈log₂ length l ⌉) ⟩
length l * ⌈log₂ length l ⌉ * ⌈log₂ length l ⌉
≡⟨ N.*-assoc (length l) ⌈log₂ length l ⌉ ⌈log₂ length l ⌉ ⟩
length l * ⌈log₂ length l ⌉ ²
∎
) , (
begin
⌈log₂ length l ⌉ * ⌈log₂ suc ⌈ length l /2⌉ ⌉ ²
≤⟨ N.*-monoʳ-≤ ⌈log₂ length l ⌉ (²-mono (lemma (length l) h)) ⟩
⌈log₂ length l ⌉ * ⌈log₂ length l ⌉ ²
≡⟨⟩
⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * ⌈log₂ length l ⌉)
≡˘⟨ Eq.cong (λ n → ⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * n)) (N.*-identityʳ _) ⟩
⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * (⌈log₂ length l ⌉ * 1))
≡⟨⟩
⌈log₂ length l ⌉ ^ 3
∎
)
)
(sort≤sort/cost/closed l)
where
lemma : ∀ n → 2 Nat.≤ n → ⌈log₂ suc ⌈ n /2⌉ ⌉ Nat.≤ ⌈log₂ n ⌉
lemma (suc (suc n)) (s≤s (s≤s h)) = log₂-mono (s≤s (s≤s (N.⌈n/2⌉≤n n)))