forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvk_layer_data.h
822 lines (716 loc) · 25.9 KB
/
vk_layer_data.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/* Copyright (c) 2015-2017, 2019-2021 The Khronos Group Inc.
* Copyright (c) 2015-2017, 2019-2021 Valve Corporation
* Copyright (c) 2015-2017, 2019-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tobin Ehlis <[email protected]>
* Author: Jeff Bolz <[email protected]>
* Author: John Zulauf <[email protected]>
*/
#ifndef LAYER_DATA_H
#define LAYER_DATA_H
#include <cassert>
#include <limits>
#include <memory>
#include <map>
#include <unordered_map>
#include <set>
#include <algorithm>
#include <iterator>
#include <type_traits>
#ifdef USE_ROBIN_HOOD_HASHING
#include "robin_hood.h"
#else
#include <unordered_set>
#endif
// namespace aliases to allow map and set implementations to easily be swapped out
namespace layer_data {
#ifdef USE_ROBIN_HOOD_HASHING
template <typename T>
using hash = robin_hood::hash<T>;
template <typename Key, typename Hash = robin_hood::hash<Key>, typename KeyEqual = std::equal_to<Key>>
using unordered_set = robin_hood::unordered_set<Key, Hash, KeyEqual>;
template <typename Key, typename T, typename Hash = robin_hood::hash<Key>, typename KeyEqual = std::equal_to<Key>>
using unordered_map = robin_hood::unordered_map<Key, T, Hash, KeyEqual>;
template <typename Key, typename T>
using map_entry = robin_hood::pair<Key, T>;
// robin_hood-compatible insert_iterator (std:: uses the wrong insert method)
template <typename T>
class insert_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void> {
public:
typedef typename T::value_type value_type;
typedef typename T::iterator iterator;
insert_iterator(T &t, iterator i) : container(&t), iter(i) {}
insert_iterator &operator=(const value_type &value) {
auto result = container->insert(value);
iter = result.first;
++iter;
return *this;
}
insert_iterator &operator=(value_type &&value) {
auto result = container->insert(std::move(value));
iter = result.first;
++iter;
return *this;
}
insert_iterator &operator*() { return *this; }
insert_iterator &operator++() { return *this; }
insert_iterator &operator++(int) { return *this; }
private:
T *container;
typename T::iterator iter;
};
#else
template <typename T>
using hash = std::hash<T>;
template <typename Key, typename Hash = std::hash<Key>, typename KeyEqual = std::equal_to<Key>>
using unordered_set = std::unordered_set<Key, Hash, KeyEqual>;
template <typename Key, typename T, typename Hash = std::hash<Key>, typename KeyEqual = std::equal_to<Key>>
using unordered_map = std::unordered_map<Key, T, Hash, KeyEqual>;
template <typename Key, typename T>
using map_entry = std::pair<Key, T>;
template <typename T>
using insert_iterator = std::insert_iterator<T>;
#endif
#if __cplusplus < 201402L
// Temporary workaround for c++11. Remove with std >= c++14.
template<typename T, typename... Args>
constexpr std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
#else
template <typename T>
constexpr auto make_unique = std::make_unique<T>;
#endif
} // namespace layer_data
// A vector class with "small string optimization" -- meaning that the class contains a fixed working store for N elements.
// Useful in in situations where the needed size is unknown, but the typical size is known If size increases beyond the
// fixed capacity, a dynamically allocated working store is created.
//
// NOTE: Unlike std::vector which only requires T to be CopyAssignable and CopyConstructable, small_vector requires T to be
// MoveAssignable and MoveConstructable
// NOTE: Unlike std::vector, iterators are invalidated by move assignment between small_vector objects effectively the
// "small string" allocation functions as an incompatible allocator.
template <typename T, size_t N, typename SizeType = uint8_t>
class small_vector {
public:
using value_type = T;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = value_type *;
using const_pointer = const value_type *;
using iterator = pointer;
using const_iterator = const_pointer;
using size_type = SizeType;
static const size_type kSmallCapacity = N;
static const size_type kMaxCapacity = std::numeric_limits<size_type>::max();
static_assert(N <= kMaxCapacity, "size must be less than size_type::max");
small_vector() : size_(0), capacity_(N) {}
small_vector(const small_vector &other) : size_(0), capacity_(N) {
reserve(other.size_);
auto dest = GetWorkingStore();
for (const auto &value : other) {
new (dest) value_type(value);
++dest;
}
size_ = other.size_;
}
small_vector(small_vector &&other) : size_(0), capacity_(N) {
if (other.large_store_) {
// Can just take ownership of the other large store
large_store_ = std::move(other.large_store_);
capacity_ = other.capacity_;
other.capacity_ = kSmallCapacity;
} else {
auto dest = GetWorkingStore();
for (auto &value : other) {
new (dest) value_type(std::move(value));
value.~value_type();
++dest;
}
}
size_ = other.size_;
other.size_ = 0;
}
bool operator==(const small_vector &rhs) const {
if (size_ != rhs.size_) return false;
auto value = begin();
for (const auto &rh_value : rhs) {
if (!(*value == rh_value)) {
return false;
}
++value;
}
return true;
}
small_vector &operator=(const small_vector &other) {
if (this != &other) {
reserve(other.size_); // reserve doesn't shrink!
auto dest = GetWorkingStore();
auto source = other.GetWorkingStore();
const auto overlap = std::min(size_, other.size_);
// Copy assign anywhere we have objects in this
for (size_type i = 0; i < overlap; i++) {
dest[i] = source[i];
}
// Copy construct anywhere we *don't* have objects in this
for (size_type i = overlap; i < other.size_; i++) {
new (dest + i) value_type(source[i]);
}
// Any entries in this past other_size_ must be cleaned up...
for (size_type i = other.size_; i < size_; i++) {
dest[i].~value_type();
}
size_ = other.size_;
}
return *this;
}
small_vector &operator=(small_vector &&other) {
if (this != &other) {
if (other.large_store_) {
clear(); // need to clean up any objects this owns.
// Can just take ownership of the other large store
large_store_ = std::move(other.large_store_);
capacity_ = other.capacity_;
size_ = other.size_;
other.capacity_ = kSmallCapacity;
} else {
// Other is using the small_store
auto source = other.begin();
iterator dest;
if (large_store_) {
// If this is using large store do a wholesale clobber of it.
ClearAndReset();
dest = GetWorkingStore();
} else {
// This is also using small store, so move assign where both have valid values
dest = GetWorkingStore();
// Move values where both vectors have valid values
for (size_type i = 0; i < std::min(size_, other.size_); i++) {
*dest = std::move(*source);
source->~value_type();
++dest;
++source;
}
}
// Other is bigger, placement new into the working store
// NOTE: this loop only runs when other is bigger
for (size_type i = size_; i < other.size_; i++) {
new (dest) value_type(std::move(*source));
source->~value_type();
++dest;
++source;
}
// Other is smaller, clean up the excess entries
// NOTE: this loop only runs when this is bigger
for (size_type i = other.size_; i < size_; i++) {
dest->~value_type();
++dest;
}
size_ = other.size_;
}
// When we're done other has no valid contents (all are moved or destructed)
other.size_ = 0;
}
return *this;
}
reference operator[](size_type pos) {
assert(pos < size_);
return GetWorkingStore()[pos];
}
const_reference operator[](size_type pos) const {
assert(pos < size_);
return GetWorkingStore()[pos];
}
// Like std::vector::back, calling back on an empty container causes undefined behavior
reference back() {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
const_reference back() const {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
bool empty() const { return size_ == 0; }
template <class... Args>
void emplace_back(Args &&...args) {
assert(size_ < kMaxCapacity);
reserve(size_ + 1);
new (GetWorkingStore() + size_) value_type(args...);
size_++;
}
void reserve(size_type new_cap) {
// Since this can't shrink, if we're growing we're newing
if (new_cap > capacity_) {
assert(capacity_ >= kSmallCapacity);
auto new_store = std::unique_ptr<BackingStore[]>(new BackingStore[new_cap]);
auto new_values = reinterpret_cast<pointer>(new_store.get());
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
new (new_values + i) value_type(std::move(working_store[i]));
working_store[i].~value_type();
}
large_store_ = std::move(new_store);
}
// No shrink here.
}
void clear() {
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
working_store[i].~value_type();
}
size_ = 0;
}
inline iterator begin() { return GetWorkingStore(); }
inline const_iterator cbegin() const { return GetWorkingStore(); }
inline const_iterator begin() const { return GetWorkingStore(); }
inline iterator end() { return GetWorkingStore() + size_; }
inline const_iterator cend() const { return GetWorkingStore() + size_; }
inline const_iterator end() const { return GetWorkingStore() + size_; }
inline size_type size() const { return size_; }
protected:
inline const_pointer GetWorkingStore() const {
const BackingStore *store = large_store_ ? large_store_.get() : small_store_;
return reinterpret_cast<const_pointer>(store);
}
inline pointer GetWorkingStore() {
BackingStore *store = large_store_ ? large_store_.get() : small_store_;
return reinterpret_cast<pointer>(store);
}
void ClearAndReset() {
clear();
large_store_.reset();
capacity_ = kSmallCapacity;
}
struct alignas(alignof(value_type)) BackingStore {
uint8_t data[sizeof(value_type)];
};
size_type size_;
size_type capacity_;
BackingStore small_store_[N];
std::unique_ptr<BackingStore[]> large_store_;
};
// This is a wrapper around unordered_map that optimizes for the common case
// of only containing a small number of elements. The first N elements are stored
// inline in the object and don't require hashing or memory (de)allocation.
template <typename Key, typename value_type, typename inner_container_type, typename value_type_helper, int N>
class small_container {
protected:
bool small_data_allocated[N];
value_type small_data[N];
inner_container_type inner_cont;
value_type_helper helper;
public:
small_container() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
}
class iterator {
typedef typename inner_container_type::iterator inner_iterator;
friend class small_container<Key, value_type, inner_container_type, value_type_helper, N>;
small_container<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
iterator() {}
iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
class const_iterator {
typedef typename inner_container_type::const_iterator inner_iterator;
friend class small_container<Key, value_type, inner_container_type, value_type_helper, N>;
const small_container<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
const_iterator() {}
const_iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const const_iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const const_iterator &other) const { return !(*this == other); }
const value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
const value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
iterator begin() {
iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
iterator end() {
iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
const_iterator begin() const {
const_iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
const_iterator end() const {
const_iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
bool contains(const Key &key) const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
return true;
}
}
// check size() first to avoid hashing key unnecessarily.
if (inner_cont.size() == 0) {
return false;
}
return inner_cont.find(key) != inner_cont.end();
}
typename inner_container_type::size_type count(const Key &key) const { return contains(key) ? 1 : 0; }
std::pair<iterator, bool> insert(const value_type &value) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], value)) {
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, false);
}
}
// check size() first to avoid hashing key unnecessarily.
auto iter = inner_cont.size() > 0 ? inner_cont.find(helper.get_key(value)) : inner_cont.end();
if (iter != inner_cont.end()) {
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, false);
} else {
for (int i = 0; i < N; ++i) {
if (!small_data_allocated[i]) {
small_data_allocated[i] = true;
helper.assign(small_data[i], value);
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, true);
}
}
iter = inner_cont.insert(value).first;
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, true);
}
}
typename inner_container_type::size_type erase(const Key &key) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
small_data_allocated[i] = false;
return 1;
}
}
return inner_cont.erase(key);
}
typename inner_container_type::size_type size() const {
auto size = inner_cont.size();
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
size++;
}
}
return size;
}
bool empty() const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
return false;
}
}
return inner_cont.size() == 0;
}
void clear() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
inner_cont.clear();
}
};
// Helper function objects to compare/assign/get keys in small_unordered_set/map.
// This helps to abstract away whether value_type is a Key or a pair<Key, T>.
template <typename MapType>
class value_type_helper_map {
using PairType = typename MapType::value_type;
using Key = typename std::remove_const<typename PairType::first_type>::type;
public:
bool compare_equal(const PairType &lhs, const Key &rhs) const { return lhs.first == rhs; }
bool compare_equal(const PairType &lhs, const PairType &rhs) const { return lhs.first == rhs.first; }
void assign(PairType &lhs, const PairType &rhs) const {
// While the const_cast may be unsatisfactory, we are using small_data as
// stand-in for placement new and a small-block allocator, so the const_cast
// is minimal, contained, valid, and allows operators * and -> to avoid copies
const_cast<Key &>(lhs.first) = rhs.first;
lhs.second = rhs.second;
}
Key get_key(const PairType &value) const { return value.first; }
};
template <typename Key>
class value_type_helper_set {
public:
bool compare_equal(const Key &lhs, const Key &rhs) const { return lhs == rhs; }
void assign(Key &lhs, const Key &rhs) const { lhs = rhs; }
Key get_key(const Key &value) const { return value; }
};
template <typename Key, typename T, int N = 1>
class small_unordered_map
: public small_container<Key, typename layer_data::unordered_map<Key, T>::value_type, layer_data::unordered_map<Key, T>,
value_type_helper_map<layer_data::unordered_map<Key, T>>, N> {
public:
T &operator[](const Key &key) {
for (int i = 0; i < N; ++i) {
if (this->small_data_allocated[i] && this->helper.compare_equal(this->small_data[i], key)) {
return this->small_data[i].second;
}
}
auto iter = this->inner_cont.find(key);
if (iter != this->inner_cont.end()) {
return iter->second;
} else {
for (int i = 0; i < N; ++i) {
if (!this->small_data_allocated[i]) {
this->small_data_allocated[i] = true;
this->helper.assign(this->small_data[i], {key, T()});
return this->small_data[i].second;
}
}
return this->inner_cont[key];
}
}
};
template <typename Key, int N = 1>
class small_unordered_set : public small_container<Key, Key, layer_data::unordered_set<Key>, value_type_helper_set<Key>, N> {};
// For the given data key, look up the layer_data instance from given layer_data_map
template <typename DATA_T>
DATA_T *GetLayerDataPtr(void *data_key, small_unordered_map<void *, DATA_T *, 2> &layer_data_map) {
/* TODO: We probably should lock here, or have caller lock */
DATA_T *&got = layer_data_map[data_key];
if (got == nullptr) {
got = new DATA_T;
}
return got;
}
template <typename DATA_T>
void FreeLayerDataPtr(void *data_key, small_unordered_map<void *, DATA_T *, 2> &layer_data_map) {
delete layer_data_map[data_key];
layer_data_map.erase(data_key);
}
// For the given data key, look up the layer_data instance from given layer_data_map
template <typename DATA_T>
DATA_T *GetLayerDataPtr(void *data_key, std::unordered_map<void *, DATA_T *> &layer_data_map) {
DATA_T *debug_data;
/* TODO: We probably should lock here, or have caller lock */
auto got = layer_data_map.find(data_key);
if (got == layer_data_map.end()) {
debug_data = new DATA_T;
layer_data_map[(void *)data_key] = debug_data;
} else {
debug_data = got->second;
}
return debug_data;
}
template <typename DATA_T>
void FreeLayerDataPtr(void *data_key, std::unordered_map<void *, DATA_T *> &layer_data_map) {
auto got = layer_data_map.find(data_key);
assert(got != layer_data_map.end());
delete got->second;
layer_data_map.erase(got);
}
namespace layer_data {
struct in_place_t {};
static constexpr in_place_t in_place{};
// A C++11 approximation of std::optional
template <typename T>
class optional {
protected:
union Store {
Store(){}; // Do nothing. That's the point.
~Store(){}; // Not safe to destroy this object outside of its stateful container to clean up T if any.
typename std::aligned_storage<sizeof(T), alignof(T)>::type backing;
T obj;
};
public:
optional() : init_(false) {}
template <typename... Args>
explicit optional(in_place_t, const Args &...args) { emplace(args...); }
optional(const optional &other) : init_(false) { *this = other; }
optional(optional &&other) : init_(false) { *this = std::move(other); }
~optional() { DeInit(); }
template <typename... Args>
T &emplace(const Args &...args) {
init_ = true;
new (&store_.backing) T(args...);
return store_.obj;
}
T *operator&() {
if (init_) return &store_.obj;
return nullptr;
}
const T *operator&() const {
if (init_) return &store_.obj;
return nullptr;
}
T *operator->() {
if (init_) return &store_.obj;
return nullptr;
}
const T *operator->() const {
if (init_) return &store_.obj;
return nullptr;
}
operator bool() const { return init_; }
bool has_value() const { return init_; }
optional &operator=(const optional &other) {
if (other.has_value()) {
if (has_value()) {
store_.obj = other.store_.obj;
} else {
emplace(other.store_.obj);
}
} else {
DeInit();
}
return *this;
}
optional &operator=(optional &&other) {
if (other.has_value()) {
if (has_value()) {
store_.obj = std::move(other.store_.obj);
} else {
emplace(std::move(other.store_.obj));
}
} else {
DeInit();
}
return *this;
}
T& operator*() & {
assert(init_);
return store_.obj;
}
const T& operator*() const& {
assert(init_);
return store_.obj;
}
T&& operator*() && {
assert(init_);
return std::move(store_.obj);
}
const T&& operator*() const&& {
assert(init_);
return std::move(store_.obj);
}
protected:
inline void DeInit() {
if (init_) {
store_.obj.~T();
init_ = false;
}
}
Store store_;
bool init_;
};
} // namespace layer_data
#endif // LAYER_DATA_H