-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_descriptives.Rmd
456 lines (349 loc) · 20.9 KB
/
1_descriptives.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
---
title: Descriptives
---
```{r}
source("0_helpers.R")
load("data/cleaned_selected.rdata")
opts_chunk$set(warning = F, message = F, error = T)
all_surveys <- all_surveys %>%
mutate(relationship_duration = duration_relationship_years + duration_relationship_month/12)
library(knitr)
opts_chunk$set(fig.width = 9, fig.height = 7, cache = T, warning = F, message = F, cache = F, error = T)
library(kableExtra)
```
## Study flow chart
```{r fig.cap="Flow chart of the steps of the menstrual cycle diary study.",fig.width=8,fig.height=8}
knitr::include_graphics("sfig_flow_chart_general_desire.png")
```
```{r}
began_s1_demo = sum(!is.na(s1_demo$created))
ended_s1_demo = sum(!is.na(s1_demo$ended))
diary <- s1_filter %>% left_join(diary, by = c('session', 'short'), suffix = c("_filter", ""))
ended_pre = diary %>% filter(!is.na(ended_initial)) %>% ungroup() %>% summarise(n = n_distinct(session)) %>% pull(n)
diary %>% group_by(gets_paid) %>% summarise(n = sum(!is.na(ended_initial[!duplicated(session)]), n = n_distinct(session)))
at_least_one_diary_entry = diary %>% group_by(session) %>% summarise(n = n_nonmissing(ended_diary)) %>% filter(n >= 1) %>% nrow()
at_least_20_diary_entries = diary %>% group_by(session) %>% summarise(n = n_nonmissing(ended_diary)) %>% filter(n >= 20) %>% nrow()
at_least_50_diary_entries = diary %>% group_by(session) %>% summarise(n = n_nonmissing(ended_diary)) %>% filter(n >= 50) %>% nrow()
in_relationship = sum(s1_demo$hetero_relationship, na.rm = T)
singles = sum(! s1_demo$hetero_relationship, na.rm = T)
at_least_one_diary_entry = s3_daily %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% filter(n >= 1) %>% nrow()
at_least_20_diary_entries = s3_daily %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% filter(n >= 20) %>% nrow()
at_least_50_diary_entries = s3_daily %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% filter(n >= 50) %>% nrow()
mean_diary_entries <- s3_daily %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% summarise(mean(n))
mean_diary_entries_by_payment <- s1_filter %>%
select(-ended) %>% left_join(s3_daily, by = 'session') %>%
group_by(gets_paid, session) %>%
summarise(n = n_nonmissing(ended)) %>%
filter(n > 0) %>%
group_by(gets_paid) %>%
summarise(responses = mean(n), n = n_distinct(session))
response_rate_over_time <- diary %>%
filter(day_number >= 0, day_number < 70) %>%
left_join(s1_filter, by = 'session', suffix = c("", "_filter")) %>%
group_by(gets_paid) %>%
mutate(
n = n_distinct(session)
) %>%
group_by(gets_paid, day_number) %>%
summarise(
n = unique(n),
entries = n_nonmissing(ended_diary),
rr = entries / unique(n))
ggplot(response_rate_over_time, aes(day_number, rr, colour = gets_paid)) + geom_point() +
ggtitle("Response rate over time", "for people who started the diary") + ylim(0,1)
mean_diary_entries_finishers <- s4_followup %>% select(-ended) %>% left_join(s3_daily, by = 'session') %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% summarise(mean(n))
response_rate_over_time <- s4_followup %>% select(-ended) %>%
left_join(diary %>% select(session, day_number, created_diary, ended_diary)) %>% filter(day_number >= 0, day_number < 70) %>%
left_join(s1_filter, by = 'session', suffix = c("", "_filter")) %>%
group_by(gets_paid) %>%
mutate(
n = n_distinct(session)
) %>%
group_by(gets_paid, day_number) %>%
summarise(
entries = n_nonmissing(ended_diary),
rr = entries / unique(n))
ggplot(response_rate_over_time, aes(day_number, rr, colour = gets_paid)) +
geom_point() +
ggtitle("Response rate over time", "for people who finished the diary") + ylim(0,1)
response_rate_over_time <- diary %>%
# I am leaving in days that we excluded post-hoc (e.g., because fertility was not estimable, to show the real response rate, irrespective of diary-data-based exclusions)
filter(reasons_for_exclusion == reasons_for_exclusion_diary) %>%
select(session, day_number, created_diary, ended_diary) %>%
filter(day_number >= 0, day_number < 70) %>%
left_join(s1_filter, by = 'session', suffix = c("", "_filter")) %>%
group_by(gets_paid) %>%
mutate(
n = n_distinct(session)
) %>%
group_by(gets_paid, day_number) %>%
summarise(
n = unique(n),
entries = n_nonmissing(ended_diary),
rr = entries / unique(n))
ggplot(response_rate_over_time, aes(day_number, rr, colour = gets_paid)) +
geom_point() +
ggtitle("Response rate over time", "for included subsample") + ylim(0,1)
nsmt2d_over_time <- s4_followup %>% select(-ended) %>%
left_join(diary %>% select(session, day_number, never_skipped_more_than_2, created_diary, ended_diary)) %>%
left_join(s1_filter, by = 'session', suffix = c("", "_filter")) %>%
left_join(mean_diary_entries_by_payment) %>%
group_by(gets_paid, day_number) %>%
summarise(entries = sum(as.numeric(never_skipped_more_than_2), na.rm = T),
rr = entries / unique(n))
ggplot(nsmt2d_over_time, aes(day_number, rr, colour = gets_paid)) +
geom_point() +
ggtitle("Percentage who never skipped more than two days over time", "for people who finished the diary") + ylim(0,1)
mean_finishing_personality_by_payment <- s1_demo %>%
left_join(s1_filter, by = 'session', suffix = c("_demo", "")) %>%
left_join(s2_initial,by ='session', suffix = c("", "_initial")) %>%
group_by(gets_paid) %>%
summarise(finish_demo = n_nonmissing(ended_demo),
finish_initial = n_nonmissing(ended_initial), n = n(),
prc_ini_over_demo = round(100*finish_initial/finish_demo),
consc = mean(bfi_consc,na.rm=T))
kable(mean_finishing_personality_by_payment)
mean_finishing_follow_up_by_payment <- s1_filter %>% select(-ended) %>% right_join(s2_initial,by ='session') %>% left_join(s4_followup, by = 'session', suffix = c("_initial", "_followup")) %>% group_by(gets_paid) %>% summarise(followup = n_nonmissing(ended_followup), initial = n_nonmissing(ended_initial), n(), prc_fu_over_initial = round(100*followup/initial))
kable(mean_finishing_follow_up_by_payment)
fertile_known_man_known = diary_social %>% group_by(session, created) %>%
summarise(n = n_nonmissing(person_attractiveness_short_term)) %>%
group_by(session) %>% summarise(n = sum(n)) # fertility known, man known
fertile_known_man_known$n %>% qplot() + xlim(1,NA)
fertile_known_person_known = diary_social %>% group_by(session, created) %>%
summarise(n = n_nonmissing(person_sex)) %>%
group_by(session) %>% summarise(n = sum(n)) # fertility known, man known
finished_timespent = s4_timespent %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% filter(n >= 1) %>% nrow()
timespent_gt3 = s4_timespent %>% group_by(session) %>% summarise(n = n_nonmissing(ended)) %>% filter(n > 3) %>% nrow()
timespent_men = network %>% group_by(session) %>% filter(person_sex == 2, person_relationship_to_anchor != "biological_relative") %>% summarise(n = n_nonmissing(ended)) %>% filter(n > 0) %>% nrow()
timespent_3men = network %>% group_by(session) %>% filter(person_sex == 2, person_relationship_to_anchor != "biological_relative") %>% summarise(n = n_nonmissing(ended)) %>% filter(n > 2) %>% nrow()
fertile_known_man_known_participants = fertile_known_man_known %>% filter(n > 0) %>% nrow()
fertile_known_person_known_participants = fertile_known_person_known %>% filter(n > 0) %>% nrow()
finished_followup = sum(!is.na(s4_followup$ended))
# all_surveys %>% mutate(
# should_be_done = created_demo + days(70) < today()
# ) %>% filter(should_be_done == T) %>% xtabs(~ is.na(ended), .)
# all_surveys %>% mutate(
# should_be_done = created_demo + days(70) < today()
# ) %>% left_join(s3_daily %>% group_by(session) %>% summarise(n = n_nonmissing(ended))) %>%
# filter(should_be_done == T, n > 40) %>% xtabs(~ is.na(ended), .)
all_surveys %>% mutate(should_be_done = created_demo + days(70) < today()) %>%
left_join( s4_timespent %>% group_by(session) %>% summarise(n_timespent = n_nonmissing(ended)), by = 'session') %>%
filter(hetero_relationship == 0, should_be_done == T, n_timespent > 0, !is.na(n_timespent)) %>% nrow()
all_surveys %>% mutate(should_be_done = created_demo + days(70) < today()) %>%
left_join( s4_timespent %>% group_by(session) %>% summarise(n_timespent = n_nonmissing(ended)), by = 'session') %>%
filter(hetero_relationship == 0 & should_be_done == T & (is.na(n_timespent) | n_timespent == 0)) %>% nrow()
```
1. __`r began_s1_demo`__ signed up for the study.
2. __`r ended_s1_demo`__ finished the demographics (`r singles` singles, `r in_relationship` in relationship).
2. __`r ended_pre`__ finished the demographic and personality questionnaires.
3. __`r at_least_one_diary_entry`__ submitted at least one diary entry (>= 20: `r at_least_20_diary_entries`, >= 50 `r at_least_50_diary_entries`). On average participants completed `r mean_diary_entries` diary entries.
4. `r finished_timespent` singles reported information on least one person mentioned during the diary (>3: `r timespent_gt3`, at least one man who wasn't biologically related: `r timespent_men`, >2men: `r timespent_3men`).
5. __`r finished_followup`__ (`r round(100*finished_followup/ended_pre)`% of those who finished the intake survey) finished the follow-up survey. Finishers completed on average `r mean_diary_entries_finishers` diary entries.
# Contraception
```{r}
library(UpSetR)
comma_separated_to_columns <- function(df, col) {
colname <- deparse(substitute(col))
df$splitcol <- df %>% pull(colname)
separate_rows(df, splitcol, convert = TRUE, sep = ", ") %>%
mutate(splitcol = if_else(is.na(splitcol), "no",
if_else(splitcol == "" |
splitcol %in% c(), "other", as.character(splitcol)))) %>%
mutate(#splitcol = stringr::str_c(colname, "_", splitcol),
value = 1) %>%
spread(splitcol, value, fill = 0) %>%
select(-colname)
}
library(UpSetR)
all_surveys %>% select(session, contraception_method) %>%
comma_separated_to_columns(contraception_method) %>%
select(-session) %>%
as.data.frame() %>%
{
upset(., ncol(.), 20, show.numbers = TRUE, order.by = "freq",
main.bar.color = "#6E8691",
matrix.color = "#6E8691",
sets.bar.color = "#53AC9B")
}
```
## social network
```{r}
summary(as.factor(network$person_sex))
by_sex = s4_timespent %>%
group_by(session) %>%
summarise(female = sum(person_sex == 1, na.rm=T), male = sum(person_sex == 2, na.rm=T), n= n()) %>% select(female, male,n)
```
```{r}
total_network = nrow(network)
persons= nrow(network %>% filter(person_remember == 1 & !is.na(ended)))
```
__`r total_network`__ number of persons who were mentioned in diary
__`r persons`__ number of nicknames/names women remembered.
## Comparison with quasi-control group
### Comparisons on key variables
```{r}
women <- all_surveys %>% filter(reasons_for_exclusion == "")
dig1 <- function(x) { sprintf("%.1f", x) }
dig2 <- function(x) { sprintf("%.2f", x) }
pct <- function(x) { sprintf("%.0f", x*100) }
remove_p_values <- function(planned_plot, call_parts = 3:10) {
subtitle <- as.list(planned_plot$labels$subtitle)
subtitle[call_parts] <- NULL
planned_plot$labels$subtitle <- as.call(subtitle)
planned_plot
}
comps = data_frame(Variable = character(0),
`HC user - Mean (SD)` = character(0),
`Cycling - Mean (SD)` = character(0),
`99% CI` = character(0),
)
compare_by_group = function(var, data, type = "np", ...) {
var_s <- enquo(var)
var <- rlang::as_name(var_s)
sd_hc = sd(data[data$hormonal_contraception == 1,][[var]], na.rm = T)
sd_nc = sd(data[data$hormonal_contraception == 0,][[var]], na.rm = T)
data$`Hormonal contraception` = forcats::fct_relevel( forcats::fct_recode(forcats::as_factor(data$hormonal_contraception), "Cycling" = "FALSE", "HC user" = "TRUE"), "HC user")
comp = as.formula(paste0("`",var, "` ~ `Hormonal contraception`"))
tt = t.test(comp, data = data, conf.level = 0.99)
summary = data_frame(Variable = var,
`HC user - Mean (SD)` = paste0(dig1(tt$estimate[1])," (", dig1(sd_hc),")"),
`Cycling - Mean (SD)` = paste0(dig1(tt$estimate[2]), " (", dig1(sd_nc), ")"),
`99% CI` = paste(dig1(tt$conf.int), collapse = ";")
)
rownames(summary) = NULL
comps <<- bind_rows(comps, summary)
data[[var]] <- data[[var]] %>% zap_attributes()
planned_plot <- ggstatsplot::ggbetweenstats(
data = data,
x = `Hormonal contraception`,
y = !! var_s,
messages = FALSE,
conf.level = 0.99,
type = type, ...,
ggtheme = theme_cowplot(font_size = 18)
) + # further modification outside of ggstatsplot
scale_color_manual("", values = c("Cycling" = "red", "HC user" = "black"), guide = F) +
# scale_x_discrete("Hormonal contraception", labels = c("1" = "HC user", "2" = "Cycling")) +
scale_fill_manual("", values = c("Cycling" = "red", "HC user" = "black"), guide = F)
remove_p_values(planned_plot)
}
library(ggstatsplot)
library(cowplot)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Age (years)` <- women$age
compare_by_group(`Age (years)`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of categories in each group and the results of a Chi-Square test for equal distribution."}
{ ggbarstats(women %>% mutate(relationship_status=as_factor(relationship_status)),
relationship_status,
hormonal_contraception,
messages = FALSE,
conf.level = 0.99,
bf.message = F,
ggtheme = theme_cowplot(font_size = 18)
) + # further modification outside of ggstatsplot
scale_x_discrete("Hormonal contraception", labels = c("TRUE" = "HC user", "FALSE" = "Cycling"))
} %>%
remove_p_values(call_parts = 3:12)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Age at first sex (years)` <- women$first_time
compare_by_group(`Age at first sex (years)`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Age at menarche (years)` <- women$menarche
compare_by_group(`Age at menarche (years)`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Relationship duration (years)` <- women$relationship_duration
compare_by_group(`Relationship duration (years)`, women) + scale_y_sqrt(breaks = c(1,5, 10, 20, 30))
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Avg. cycle length (days)` <- women$menstruation_length
compare_by_group(`Avg. cycle length (days)`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Cycle regularity` <- women$menstruation_regularity
compare_by_group(`Cycle regularity`, women) +
scale_y_continuous(
labels = c("1" = "no fluctuation",
"2" = "1-2 days",
"3" = "3-5 days",
"4" = ">5 days"))
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of Yuen's test for trimmed means (10% trimmed)."}
women$`No. lifetime sexual partners` <- women$number_sexual_partner
compare_by_group(`No. lifetime sexual partners`, women, type = "r") %>%
remove_p_values(call_parts = 3:4) +
scale_y_sqrt(breaks = c(1,5, 10, 20, 50, 100))
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`BFI Extraversion` <- women$bfi_extra
compare_by_group(`BFI Extraversion`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`BFI Agreeableness` <- women$bfi_agree
compare_by_group(`BFI Agreeableness`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`BFI Neuroticism` <- women$bfi_neuro
compare_by_group(`BFI Neuroticism`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`BFI Conscientiousness` <- women$bfi_consc
compare_by_group(`BFI Conscientiousness`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`BFI Openness` <- women$bfi_open
compare_by_group(`BFI Openness`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Sociosexuality Inventory Revised` <- women$soi_r
compare_by_group(`Sociosexuality Inventory Revised`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
women$`Relationship satisfaction` <- women$relationship_satisfaction
compare_by_group(`Relationship satisfaction`, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of values in each group and the results of a Mann-Whitney U test."}
compare_by_group(religiosity, women)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of categories in each group and the results of a Chi-Square test for equal distribution."}
{ ggbarstats(women,
net_income,
hormonal_contraception,
messages = FALSE,
bf.message = F,
conf.level = 0.99,
ggtheme = theme_cowplot(font_size = 18)
) + # further modification outside of ggstatsplot
scale_x_discrete("Hormonal contraception", labels = c("TRUE" = "HC user", "FALSE" = "Cycling"))} %>%
remove_p_values(call_parts = 3:12)
```
```{r fig.cap="Comparison of the hormonal contraception users (our quasi-control group) with women who are regularly cycling. The plot shows the distribution of categories in each group and the results of a Chi-Square test for equal distribution."}
{ ggbarstats(women,
living_situation,
hormonal_contraception,
messages = FALSE,
conf.level = 0.99,
bf.message = F,
ggtheme = theme_cowplot(font_size = 18)
) + # further modification outside of ggstatsplot
scale_x_discrete("Hormonal contraception", labels = c("TRUE" = "HC user", "FALSE" = "Cycling")) } %>%
remove_p_values(call_parts = 3:12)
```
## Summary
```{r}
comps %>%
kable(caption = "Means, SDs, and differences between both groups for all continuous variables") %>%
footnote("99% CI interval of the difference.") %>%
kable_styling()
```
## Multiple regression
```{r fig.cap="A probit regression predicting hormonal contraception with many predictors at once.", fig.height=10,fig.width=9}
altogether = glm(hormonal_contraception ~ age + living_situation + religiosity + bfi_extra + bfi_neuro + bfi_agree + bfi_consc + bfi_open + soi_r + first_time + relationship_status + log1p(number_sexual_partner) + has_children + net_income, data = women %>% mutate(relationship_status=as_factor(relationship_status)), family = binomial("probit"))
ggcoefstats(altogether, package = "ggsci", palette = "default_igv", p.adjust.method = "BH",
conv.level = 0.99, stats.labels = FALSE, point.color = "black") +
ggrepel::geom_text_repel(aes(label = sprintf("%.2f [%.2f;%.2f]", estimate, conf.low, conf.high)), size = 3.3)
```