-
Notifications
You must be signed in to change notification settings - Fork 19
/
config.ini.example
executable file
·121 lines (84 loc) · 4.11 KB
/
config.ini.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#main config file. See core/ParZu_parameters.pl for some technical parameters.
#Temporary directory: some temporary files are created during parsing.
#can be any existing directory, or 'local' (in which case the temporary files will be created in the 'tmp' folder in the installation directory.
#make sure that any users have write permissions
tempdir = local
#######################################
#Use unique names for temporary files.
#0 to disable, 1 to enable
#Use 1 in multi-user environments
#Default: 0
uniquetmp = 1
#######################################
#Delete temporary files after parsing. More resource friendly, especially if uniquetmp (see above) is enabled
#Set to 0 for debugging purposes.
#Default: 1
deltemp = 1
#######################################
#Tagger command
#You can use any POS tagger that uses the STTS tagset and the expected input/output format. For more info, check the TECHNICAL FAQ section in the Readme file
#treetagger-wrapper.py is written specifically for TreeTagger, and you need to set the correct path to the TreeTagger binary in treetagger-wrapper.py if you use it.
taggercmd = /data/clevertagger/clevertagger
#######################################
#Gertwol commands
gertwolcmd = /opt/bin/uis-gertwol
gertwolscorecmd = /opt/bin/gertwolscore
#######################################
# model for SMOR morphological analysis.
# will be called with fst-infl (requires sfst)
# pre-compiled Zmorge models can be found on https://pub.cl.uzh.ch/users/sennrich/zmorge/
smor_model = /home/rico/parzu/zmorge-20140224-smor_newlemma.ca
#######################################
#Morphology: set this to none if Gertwol is not installed/available on the system
#gertwol: use gertwol for morphological analysis
#smor: use SMOR (or compatible tool: Zmorge or morphisto) for morphological analysis
#none: no morphological analysis
#keep: use morphological analyis from input. Use this if do your own preprocessing
#Default: smor
morphology = smor
#######################################
#Output format: supported so far:
#conll: CoNLL 2007 data format (defined at http://nextens.uvt.nl/depparse-wiki/DataFormat )
#POSITION WORDFORM LEMMA CPOS POS MORPHOLOGY HEADPOSITION DEPREL _ _
#graphical: generate one SVG image per sentence in your current directory, using DepSVG.
#moses: format used by moses SMT system
#WORDFORM|POS|DEPREL|HEAD
#preprocessed: return preprocessed input (unparsed, but parser-ready)
#prolog: prolog-readable format
#word(Sentence, Position, WordForm, Lemma, POS, DepRel, HeadPosition, Morphology).
#raw: parser output without postprocessing (trees are projective; access to all input information (lemmas/morph. analysis etc.))
#Default: conll
outputformat = conll
#######################################
#Input format: supported so far:
#plain: plain text
#preprocessed: parser-ready input (no further preprocessing required)
#tokenized: one token per line; empty lines mark sentence boundaries
#tagged: POS-tagged text. Format is 'token \t tag \n'
#Default: plain
inputformat = plain
#######################################
#Number of parallel processes of the main parsing step
# 0 uses cpu_count
# 1 disables multiprocessing
# Any x > 1 makes the program spawn x parser processes
# Any x < 0 makes the program spawn (cpu_count-x) parser processes
# Default: 1
#Number of parallel processes of the main parsing step
# 0 uses cpu_count
# 1 disables multiprocessing
# Any x > 1 makes the program spawn x parser processes
# Any x < 0 makes the program spawn (cpu_count-x) parser processes
# Default: 1
#(Requires python 2.6 or newer; older versions automatically use only one process)
processes = 4
#######################################
#Use nbest tagging output
#This currently only works with a CRF++ tagger
#Set to '0' to disable, or any positive integer to enable
nbestmode = 0
#######################################
#probability cutoff in nbest mode
#Discard POS analyses before tagging if their probability, divided by the probability of the best analysis, is below this threshold.
#Allows for high values of nbestmode without sacrificing too much time
nbest_cutoff = 0.05