-
Notifications
You must be signed in to change notification settings - Fork 77
/
transformer.py
130 lines (115 loc) · 4.55 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
class TransformerNetwork(nn.Module):
"""Feedforward Transformation Network without Tanh
reference: https://arxiv.org/abs/1603.08155
exact architecture: https://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf
"""
def __init__(self):
super(TransformerNetwork, self).__init__()
self.ConvBlock = nn.Sequential(
ConvLayer(3, 32, 9, 1),
nn.ReLU(),
ConvLayer(32, 64, 3, 2),
nn.ReLU(),
ConvLayer(64, 128, 3, 2),
nn.ReLU()
)
self.ResidualBlock = nn.Sequential(
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3)
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None")
)
def forward(self, x):
x = self.ConvBlock(x)
x = self.ResidualBlock(x)
out = self.DeconvBlock(x)
return out
class TransformerNetworkTanh(TransformerNetwork):
"""A modification of the transformation network that uses Tanh function as output
This follows more closely the architecture outlined in the original paper's supplementary material
his model produces darker images and provides retro styling effect
Reference: https://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf
"""
# override __init__ method
def __init__(self, tanh_multiplier=150):
super(TransformerNetworkTanh, self).__init__()
# Add a Tanh layer before output
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None"),
nn.Tanh()
)
self.tanh_multiplier = tanh_multiplier
# Override forward method
def forward(self, x):
return super(TransformerNetworkTanh, self).forward(x) * self.tanh_multiplier
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(ConvLayer, self).__init__()
# Padding Layers
padding_size = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding_size)
# Convolution Layer
self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
# Normalization Layers
self.norm_type = norm
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(out_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(out_channels, affine=True)
def forward(self, x):
x = self.reflection_pad(x)
x = self.conv_layer(x)
if (self.norm_type=="None"):
out = x
else:
out = self.norm_layer(x)
return out
class ResidualLayer(nn.Module):
"""
Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
"""
def __init__(self, channels=128, kernel_size=3):
super(ResidualLayer, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1)
self.relu = nn.ReLU()
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1)
def forward(self, x):
identity = x # preserve residual
out = self.relu(self.conv1(x)) # 1st conv layer + activation
out = self.conv2(out) # 2nd conv layer
out = out + identity # add residual
return out
class DeconvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
super(DeconvLayer, self).__init__()
# Transposed Convolution
padding_size = kernel_size // 2
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
# Normalization Layers
self.norm_type = norm
if (norm=="instance"):
self.norm_layer = nn.InstanceNorm2d(out_channels, affine=True)
elif (norm=="batch"):
self.norm_layer = nn.BatchNorm2d(out_channels, affine=True)
def forward(self, x):
x = self.conv_transpose(x)
if (self.norm_type=="None"):
out = x
else:
out = self.norm_layer(x)
return out