forked from rspeer/dominionstats
-
Notifications
You must be signed in to change notification settings - Fork 17
/
count_buys.py
201 lines (160 loc) · 6.94 KB
/
count_buys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/python
"""Computes stats about buys/gains and game length for all cards in the game.
When this is called as a stand alone program, it will will incrementally
update statistics for all games in the database.
"""
import time
import pymongo
from stats import MeanVarStat as MVS
import analysis_util
import card_info
import game
import incremental_scanner
import mergeable
import primitive_util
import utils
NO_INFO = MVS().mean_diff(MVS())
PROV_SMOOTH = 21.4
COLONY_SMOOTH = 23.5
class BuyStat(primitive_util.PrimitiveConversion, mergeable.MergeableObject):
""" A bunch of MeanVar statistics about card buys/game length, etc """
def __init__(self):
self.buys = MVS()
self.gains = MVS()
self.trashes = MVS()
self.returns = MVS()
self.any_gained = MVS()
self.available = MVS()
self.game_length = MVS(1.0, PROV_SMOOTH, PROV_SMOOTH * PROV_SMOOTH)
self.game_length_colony = MVS(1.0, COLONY_SMOOTH,
COLONY_SMOOTH * COLONY_SMOOTH)
@property
def none_gained(self):
return self.available - self.any_gained
def effect_with(self):
return getattr(self, 'effectiveness_gain', NO_INFO)
def effect_without(self):
return getattr(self, 'effectiveness_skip', NO_INFO)
class DeckBuyStats(primitive_util.ConvertibleDefaultDict,
mergeable.MergeableDict):
""" Essentially, a defaultdict of BuyStats.
Since this is convertible, it can be easily turned into a value that
consists of nothing but primitive types, which is nice for mongo and JSON.
Likewise, it can be recreated from such a value.
Since it is mergeable, it can be combined with another DeckBuysInstance to
tell the combined story.
"""
def __init__(self):
primitive_util.ConvertibleDefaultDict.__init__(self, BuyStat)
def accum_buy_stats(games_stream, accum_stats,
acceptable_deck_filter=lambda game, name: True,
max_games=-1):
""" Accumulate buy statistics from games_stream into accum_stats.
games_stream: an iterable of game.Game objects.
accum_stats: DeckBuyStats object to store results.
acceptable_deck_filter: predicate that determines if information about
a particular deck should be included. By default, include everything.
"""
for idx, game_val in enumerate(games_stream):
counted_game_len = False
every_set_cards = card_info.EVERY_SET_CARDS
for changes in game_val.deck_changes_per_player():
if not acceptable_deck_filter(game_val, changes.name):
continue
any_gained = set()
win_points = game_val.get_player_deck(changes.name).WinPoints()
for category in game.PlayerDeckChange.CATEGORIES:
for card in getattr(changes, category):
getattr(accum_stats[card], category).add_outcome(
win_points)
if category in ['gains', 'buys']:
any_gained.add(card)
for card in any_gained:
accum_stats[card].any_gained.add_outcome(win_points)
all_avail = analysis_util.available_cards(game_val,
any_gained)
for card in all_avail:
accum_stats[card].available.add_outcome(win_points)
if not counted_game_len: # don't double count this
counted_game_len = True
game_len = game_val.get_turns()[-1].get_turn_no()
for card in all_avail:
stats_obj = accum_stats[card]
stats_obj.game_length.add_outcome(game_len)
if 'Colony' in game_val.get_supply():
stats_obj.game_length_colony.add_outcome(game_len)
if idx + 1 == max_games:
break
def add_effectiveness(accum_stats, global_stats):
"""
Add some statistics about a player's 'effectiveness' when they gain or
don't gain the card.
"""
# first, find the incremental effect of the player's skill
any_eff = accum_stats['Estate'].available.mean_diff(
global_stats['Estate'].available)
for card in accum_stats:
# now compare games in which the player gains/skips the card to gains
# in which other players gain/skip the card
stats_obj = accum_stats[card]
global_stats_obj = global_stats[card]
card_gain_eff = stats_obj.any_gained.mean_diff(
global_stats_obj.any_gained)
card_skip_eff = stats_obj.none_gained.mean_diff(
global_stats_obj.none_gained)
stats_obj.effectiveness_gain = card_gain_eff.mean_diff(any_eff)
stats_obj.effectiveness_skip = card_skip_eff.mean_diff(any_eff)
def do_scan(scanner, games_col, accum_stats, max_games):
""" Use scanner to accumulate stats from games_col into accum_stats .
scanner: incremental_scanner.Scanner to use for traversal.
games_col: Mongo collection to scan.
accum_stats: DeckBuyStats instance to store results.
"""
accum_buy_stats(analysis_util.games_stream(scanner, games_col),
accum_stats, max_games=max_games)
def main():
""" Scan and update buy data"""
start = time.time()
con = pymongo.Connection()
games = con.test.games
output_db = con.test
parser = utils.incremental_max_parser()
args = parser.parse_args()
overall_stats = DeckBuyStats()
scanner = incremental_scanner.IncrementalScanner('buys', output_db)
buy_collection = output_db['buys']
if not args.incremental:
print 'resetting scanner and db'
scanner.reset()
buy_collection.drop()
start_size = scanner.get_num_games()
print scanner.status_msg()
do_scan(scanner, games, overall_stats, args.max_games)
print scanner.status_msg()
end_size = scanner.get_num_games()
if args.incremental:
existing_overall_data = DeckBuyStats()
utils.read_object_from_db(existing_overall_data, buy_collection, '')
overall_stats.merge(existing_overall_data)
def deck_freq(data_set):
return data_set['Estate'].available.frequency()
print 'existing', deck_freq(existing_overall_data), 'decks'
print 'after merge', deck_freq(overall_stats), 'decks'
utils.write_object_to_db(overall_stats, buy_collection, '')
scanner.save()
time_diff = time.time() - start
games_diff = end_size - start_size
print ('took', time_diff, 'seconds for', games_diff, 'games for a rate of',
games_diff / time_diff, 'games/sec')
def profilemain():
""" Like main(), but print a profile report."""
import hotshot, hotshot.stats
prof = hotshot.Profile("buys.prof")
prof.runcall(main)
prof.close()
stats = hotshot.stats.load("buys.prof")
stats.strip_dirs()
stats.sort_stats('time', 'calls')
stats.print_stats(20)
if __name__ == '__main__':
main()