Skip to content

Latest commit

 

History

History
21 lines (19 loc) · 1.04 KB

resources.md

File metadata and controls

21 lines (19 loc) · 1.04 KB
layout title nav_order
home
Resources
4

Resources


Textbooks

There are no required textbooks for this course, but the following are good references:

  • Planning with Markov Decision Processes: An AI Perspective. Mausam & Andrey Kolobov (Morgan & Claypool, 2012).
  • Algorithms for Decision Making. Mykel J. Kochenderfer (MIT Press, 2022).
  • Planning Algorithms. Steven M. LaValle (Cambridge University Press, 2006).
  • Artificial Intelligence: A Modern Approach (AIMA). Stuart Russell & Peter Norvig (Fourth Edition, Pearson, 2020).
  • Probabilistic Machine Learning: An Introduction. Kevin Murphy (MIT Press, 2022).
  • Pattern Recognition and Machine Learning. Christopher Bishop (Springer, 2006).
  • Reinforcement Learning: An Introduction. Richard Sutton & Andrew Barto (Second Edition, MIT Press, 2018).
  • Machine Learning Methods for Planning. Steven Minton (Morgan Kaufmann, 2000).