forked from mgruppi/schme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parameter_search.py
166 lines (133 loc) · 6.18 KB
/
parameter_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Apply grid search for find best combination of landmark and threshold
# for the problem of classification
import os
import numpy as np
from generate_answers import read_answers, eval_binary, eval_ranking, \
write_answer, load_targets, get_feature_cdf
from collections import Counter
def read_feature_file(path):
with open(path, encoding="utf-8") as fin:
data = map(lambda s: s.strip().split("\t"), fin.readlines())
words, x = zip(*data)
return words, np.array(x, dtype=float)
# p_features: dictionary of str-> array of feature columns
# target_ids: id (index) of words to be evaluated
# use: columns to use, if None then use all columns
def soft_voting(p_features, targets, target_ids, use=None, threshold=0.5):
voting = dict()
labels = dict()
if not use:
use = list(p_features.keys())
for t, tid in zip(targets, target_ids):
voting[t] = sum(p_features[f][tid] for f in use)/len(use)
labels[t] = int(voting[t] > threshold)
return voting, labels
def main():
languages = ["english", "german", "latin", "swedish"]
linestyles = {"english": "solid", "german": (0, (3, 1, 1, 1, 1, 1)),
"latin": "dashed",
"swedish": "dashdot"}
linecolors = {"english": "#003f5c", "german": "#7a5195",
"latin": "#ef5675", "swedish": "#ffa600"}
truth_bin, truth_rank = read_answers() # read ground truth
feature_configs = [["cosine"], ["map"], ["cosine", "freq_diff"],
["map", "freq_diff"],
["cosine", "freq_diff", "map"]]
thres = np.arange(0.0, 1.0, 0.05)
thres = [round(t, 2) for t in thres]
total_best_acc = 0
total_best_rank = 0
# Begin language
for language in languages:
feature_path = "features/landmarks/%s" % language
x_landmarks = list() # store list of int landmarks
# Make list of items
items = [i for i in os.listdir(feature_path) if os.path.isdir(os.path.join(feature_path, i))]
items = sorted([int(i) for i in items]) # sort paths
items = items[1:] + [items[0]] # quickfix to show all landmarks at the end
# Print class ratio
labels = Counter(truth_bin[language].values())
print(language)
print("Majority", labels, round(max(labels.values())/sum(labels.values()), 3))
# Store best parameters and values
best_acc = 0
best_land = -1
best_t = -1
best_feature = []
best_rank = 0
best_land_rank = -1
best_feature_rank = []
best_ans_cls = None
best_ans_rank = None
# Stores accuracy grid thresholds X landmarks
acc_grid = np.zeros((len(thres), len(items)))
# Begin landmarks
for li, item in enumerate(items):
if not os.path.isdir(os.path.join(feature_path, str(item))):
continue
f_path = os.path.join(feature_path, str(item))
features = dict()
for root, dirs, files in os.walk(f_path):
for f in files:
feature_name = f.split(".", 1)[0]
words, x = read_feature_file(os.path.join(f_path, f))
features[feature_name] = x
word_id = {w: i for i, w in enumerate(words)}
target_path = "test_data_public/%s/targets.txt" % language
targets = load_targets(target_path)
target_ids = [word_id[t] for t in targets]
# If landmark value is 'None', this means we use all words as landm
if item == -1:
x_landmarks.append(len(word_id))
else:
x_landmarks.append(int(item))
# Compute all CDFs
p_features = {f: get_feature_cdf(features[f]) for f in features}
# Begin threshold
for ti, t in enumerate(thres):
for use_features in feature_configs:
voting, classes = soft_voting(p_features, targets, target_ids,
use=use_features, threshold=t)
# Get accuracy, precision, and recall
acc_bin, prec_bin, rec_bin, f1_bin, fo_bin = eval_binary(classes, truth_bin[language])
r_rank = eval_ranking(voting, truth_rank[language])
acc_grid[ti][li] = acc_bin
if acc_bin > best_acc or (acc_bin == best_acc and x_landmarks[-1] < best_land):
best_acc = round(acc_bin, 3)
best_t = t
best_land = x_landmarks[-1]
best_feature = use_features
best_ans_cls = classes
if r_rank > best_rank or (r_rank == best_rank and x_landmarks[-1] < best_land_rank):
best_rank = round(r_rank, 3)
best_land_rank = x_landmarks[-1]
best_feature_rank = use_features
best_ans_rank = voting
print(language)
print("- Best cls", best_acc, best_land, best_t, best_feature)
print(" - acc:", best_acc)
print(" - landmarks:", best_land, round(best_land/len(words),2 ))
print(" - t:", best_t)
print(" - best_feature:", best_feature)
print("- Best ranking")
print(" - acc:", best_rank)
print(" - landmarks:", best_land_rank, round(best_land_rank/len(words), 2))
print(" - best_feature:", best_feature_rank)
print()
# Save best answers
out_task1 = "answer/task1/%s.txt" % language
out_task2 = "answer/task2/%s.txt" % language
if not os.path.exists("answer"):
os.mkdir("answer")
if not os.path.exists("answer/task1"):
os.mkdir("answer/task1")
if not os.path.exists("answer/task2"):
os.mkdir("answer/task2")
write_answer(out_task1, targets, best_ans_cls)
write_answer(out_task2, targets, best_ans_rank)
total_best_acc += best_acc
total_best_rank += best_rank
print("+ Final best acc", total_best_acc/4)
print("+ Final best rank", total_best_rank/4)
if __name__ == "__main__":
main()