forked from mgruppi/s4-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
s4.py
executable file
·608 lines (512 loc) · 23.6 KB
/
s4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""Implements self supervised semantic shift functions
It uses poisoning attacks to learn landmarks in a self-supervised way
At each iteration, generate perturbation on the data, generating positive
and negative samples
Learn the separation between them (using any classifier)
Apply the classifier to the original (non-perturbated) data
Negatives -> landmarks
Positives -> semantically changed
We can begin by aligning on all words, and then learn better landmarks from
there. Alternatively, one can start from random landmarks."""
# Third party modules
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.svm import SVC, LinearSVC
from sklearn.metrics import accuracy_score, log_loss
from scipy.spatial.distance import cosine, euclidean
import matplotlib.pyplot as plt
import seaborn as sns
# Local modules
from WordVectors import WordVectors, intersection
from alignment import align
# Initialize random seeds
np.random.seed(1)
tf.random.set_seed(1)
def negative_samples(words, size, p=None):
"""
Returns negative samples of semantic change
May use distribution of cosine distance as sampling distribution
"""
neg_samples = np.random.choice(words, size, p=p)
return neg_samples
def inject_change_single(wv, w, words, v_a, alpha, replace=False,
max_tries=50):
"""
Injects change to word w in wv by randomly selecting a word t in wv
and injecting the sense of t in to w.
The modified vector of w must have a higher cosine distance to v_a
than its original version. This is done by sampling t while the cosine of
w is not greater than that of v_a and wv(w) or until a max_tries.
v_a is the vector of word w in the parallel corpus (not wv).
Arguments:
wv - WordVectors of the corpus to be modified
w - (str) Word to be modified
words - (list) Pool of words to sample from, injecting sense
v_a - (np.ndarray) word vector of w in the source parallel to wv
alpha - (float) Rate of injected change
replace - (bool) Whether to replace w with t instead of 'moving' w towards t
Returns:
x - (np.ndarray) modified vector of w
"""
cos_t = cosine(v_a, wv[w]) # cosine distance threshold we want to surpass
c = 0
tries = 0
w_id = wv.word_id[w]
v_b = np.copy(wv.vectors[w_id])
while c < cos_t and tries < max_tries:
tries += 1
selected = np.random.choice(words) # select word with new sense
if not replace:
b = wv[w] + alpha*wv[selected]
v_b = b
else:
v_b = wv[selected]
c = cosine(v_a, v_b)
return v_b
def inject_change_batch(wv, changes, alpha, replace=True):
"""
Given a WordVectors object and a list of words, perform fast injection
of semantic change by using the update rule from Word2Vec
wv - WordVectors (input)
changes - list of n tuples (a, b) that drives the change such that b->a
i.e.: simulates using b in the contexts of a
alpha - degree in which to inject the change
if scalar: apply same alpha to every pair
if array-like: requires size n, specifies individual alpha values
for each pair
replace - (bool) if True, words are replaced instead of moved
e.g.: if pair is (dog, car), then v_car <- v_dog
Returns a WordVectors object with the change
"""
wv_new = WordVectors(words=wv.words, vectors=np.copy(wv.vectors))
for i, pair in enumerate(changes):
t, w = pair
t_i = wv.word_id[t] # target word
w_i = wv.word_id[w] # modified word
# Update vector with alpha and score
# Higher score means vectors are already close, thus apply less change
# Alpha controls the rate of change
if not replace:
b = wv_new[w] + alpha*(1)*wv[t]
wv_new.vectors[w_i] = b
else:
wv_new.vectors[w_i] = wv[t]
# print("norm b", np.linalg.norm(b))
return wv_new
def get_features(x, names=["cos"]):
"""
Compute features given input training data (concatenated vectors)
Default features is cosine. Accepted features: cosine (cos).
Attributes:
x - size n input training data as concatenated word vectors
names - size d list of features to compute
Returns:
n x d feature matrix (floats)
"""
x_out = np.zeros((len(x), len(names)), dtype=float)
for i, p in enumerate(x):
for j, feat in enumerate(names):
if feat == "cos":
x_ = cosine(p[:len(p)//2], p[len(p)//2:])
x_out[i][j] = x_
return x_out
def build_sklearn_model():
"""
Build SVM using sklearn model
The model uses an RBF kernel and the features are given by difference
between input vectors u-v.
Return: sklearn SVC
"""
model = SVC(random_state=0, probability=True)
return model
def build_keras_model(dim):
"""
Builds the keras model to be used in self-supervision.
Return: Keras-Tensorflow2 model
"""
h1_dim = 100
h2_dim = 100
model = keras.Sequential([
keras.layers.Input(shape=(dim)),
keras.layers.Dense(h1_dim, activation="relu",
activity_regularizer=keras.regularizers.l2(1e-2)),
# keras.layers.Dense(h2_dim, activation="relu",
# activity_regularizer=keras.regularizers.l2(1e-2)),
keras.layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
loss="binary_crossentropy",
metrics=["accuracy"])
return model
def threshold_crossvalidation(wv1, wv2, iters=100,
n_fold=1,
n_targets=100,
n_negatives=100,
fast=True,
rate=0.5,
t=0.5,
landmarks=None,
t_overlap=1,
debug=False):
"""
Runs crossvalidation over self-supervised samples, carrying out a model
selection to determine the best cosine threshold to use in the final
prediction.
Arguments:
wv1, wv2 - input WordVectors - required to be intersected and ALIGNED before call
plot - 1: plot functions in the end 0: do not plot
iters - max no. of iterations
n_fold - n-fold crossvalidation (1 - leave one out, 10 - 10-fold cv, etc.)
n_targets - number of positive samples to generate
n_negatives - number of negative samples
fast - use fast semantic change simulation
rate - rate of semantic change injection
t - classificaiton threshold (0.5)
t_overlap - overlap threshold for (stop criterion)
landmarks - list of words to use as landmarks (classification only)
debug - toggles debugging mode on/off. Provides reports on several metrics. Slower.
Returns:
t - selected cosine threshold t
"""
wv2_original = WordVectors(words=wv2.words, vectors=wv2.vectors.copy())
landmark_set = set(landmarks)
non_landmarks = [w for w in wv1.words if w not in landmark_set]
for iter in range(iters):
replace = dict() # replacement dictionary
pos_samples = list()
pos_vectors = dict()
# Randomly sample words to inject change to
# If no word is flagged as non_landmarks, sample from all words
# In practice, this should never occur when selecting landmarks
# but only for classification when aligning on all words
if len(non_landmarks) > 0:
targets = np.random.choice(non_landmarks, n_targets)
# Make targets deterministic
#targets = non_landmarks
else:
targets = np.random.choice(wv1.words, n_targets)
for target in targets:
# Simulate semantic change in target word
v = inject_change_single(wv2_original, target, wv1.words,
wv1[target], rate)
pos_vectors[target] = v
pos_samples.append(target)
# Convert to numpy array
pos_samples = np.array(pos_samples)
# Get negative samples from landmarks
neg_samples = negative_samples(landmarks, n_negatives, p=None)
neg_vectors = {w: wv2_original[w] for w in neg_samples}
# Create dictionary of supervision samples (positive and negative)
# Mapping word -> vector
sup_vectors = {**neg_vectors, **pos_vectors}
# Prepare training data
words_train = np.concatenate((pos_samples, neg_samples))
# assign labels to positive and negative samples
y_train = [1] * len(pos_samples) + [0] * len(neg_samples)
# Stack columns to shuffle data and labels together
train = np.column_stack((words_train, y_train))
# Shuffle batch
np.random.shuffle(train)
# Detach data and labels
words_train = train[:, 0]
y_train = train[:, -1].astype(int)
# Calculate cosine distance of training samples
x_train = np.array([cosine(wv1[w], sup_vectors[w]) for w in words_train])
# t_pool = [0.2, 0.7]
t_pool = np.arange(0.2, 1, 0.1)
best_acc = 0
best_t = 0
for t_ in t_pool:
acc = 0
for i in range(0, len(x_train), n_fold):
x_cv = x_train[i:i+n_fold]
y_true = y_train[i:i+n_fold]
y_hat = x_cv > t_
acc += sum(y_hat == y_true)/len(x_cv)
acc = acc/(len(x_train)//n_fold)
if acc > best_acc:
best_acc = acc
best_t = t_
print("- New best t", t_, acc)
return best_t
def s4(wv1, wv2, verbose=0, plot=0, cls_model="nn",
iters=100,
n_targets=10,
n_negatives=10,
fast=True,
rate=0,
t=0.5,
t_overlap=1,
landmarks=None,
update_landmarks=True,
return_model=False,
debug=False):
"""
Performs self-supervised learning of semantic change.
Generates negative samples by sampling from landmarks.
Generates positive samples via simulation of semantic change on random non-landmark words.
Trains a classifier, fine-tune it across multiple iterations.
If update_landmarks is True, then it learns landmarks from that step. In this case,
the returned values are landmarks, non_landmarks, Q (transform matrix)
Otherwise, landmarks are fixed from a starting set and the returned value
is the learned classifier - landmarks must be passed.
Arguments:
wv1, wv2 - input WordVectors - required to be intersected before call
verbose - 1: display log, 0: quiet
plot - 1: plot functions in the end 0: do not plot
cls_model - classification model to use {"nn", "svm_auto", "svm_features"}
iters - max no. of iterations
n_targets - number of positive samples to generate
n_negatives - number of negative samples
fast - use fast semantic change simulation
rate - rate of semantic change injection
t - classificaiton threshold (0.5)
t_overlap - overlap threshold for (stop criterion)
landmarks - list of words to use as landmarks (classification only)
update_landmarks - if True, learns landmarks. Otherwise, learns classification model.
debug - toggles debugging mode on/off. Provides reports on several metrics. Slower.
Returns:
if update_landmarks is True:
landmarks - list of landmark words
non_landmarks - list of non_landmark words
Q - transformation matrix for procrustes alignment
if update_landmarks is False:
model - binary classifier
"""
# Define verbose prints
if verbose==1:
def verbose_print(*s, end="\n"):
print(*s, end=end)
elif verbose==0:
def verbose_print(*s, end="\n"):
return None
wv2_original = WordVectors(words=wv2.words, vectors=wv2.vectors.copy())
avg_window = 0 # number of iterations to use in running average
# Begin alignment
if update_landmarks:
# Check if landmarks is initialized
if landmarks == None:
wv1, wv2, Q = align(wv1, wv2) # start form global alignment
landmark_dists = [euclidean(u, v) for u, v in zip(wv1.vectors, wv2.vectors)]
landmark_args = np.argsort(landmark_dists)
landmarks = [wv1.words[i] for i in landmark_args[:int(len(wv1.words)*0.5)]]
# landmarks = np.random.choice(wv1.words, int(len(wv1)*0.5))
landmark_set = set(landmarks)
non_landmarks = np.array([w for w in wv1.words if w not in landmark_set])
else:
landmark_set = set(landmarks)
non_landmarks = [w for w in wv1.words if w not in landmark_set]
wv1, wv2, Q = align(wv1, wv2, anchor_words=landmarks)
if cls_model == "nn":
model = build_keras_model(wv1.dimension*2)
elif cls_model == "svm_auto" or cls_model == "svm_features":
model = build_sklearn_model() # get SVC
landmark_hist = list() # store no. of landmark history
loss_hist = list() # store self-supervision loss history
alignment_loss_hist = list() # store landmark alignment loss
alignment_out_hist = list() # store alignment loss outside of lm
alignment_all_hist = list()
cumulative_out_hist = list()
cumulative_alignment_hist = list() # store cumulative loss alignment
overlap_hist = list() # store landmark overlap history
cumulative_overlap_hist = list() # mean overlap history
cumulative_loss = 0
# History of cosines
cos_loss_in_hist = list()
cos_loss_out_hist = list()
cumulative_cos_in = list()
cumulative_cos_out = list()
prev_landmarks = set(landmarks)
for iter in range(iters):
replace = dict() # replacement dictionary
pos_samples = list()
pos_vectors = dict()
# Randomly sample words to inject change to
# If no word is flagged as non_landmarks, sample from all words
# In practice, this should never occur when selecting landmarks
# but only for classification when aligning on all words
if len(non_landmarks) > 0:
targets = np.random.choice(non_landmarks, n_targets)
# Make targets deterministic
#targets = non_landmarks
else:
targets = np.random.choice(wv1.words, n_targets)
for target in targets:
# Simulate semantic change in target word
v = inject_change_single(wv2_original, target, wv1.words,
wv1[target], rate)
pos_vectors[target] = v
pos_samples.append(target)
# Convert to numpy array
pos_samples = np.array(pos_samples)
# Get negative samples from landmarks
neg_samples = negative_samples(landmarks, n_negatives, p=None)
neg_vectors = {w: wv2_original[w] for w in neg_samples}
# Create dictionary of supervision samples (positive and negative)
# Mapping word -> vector
sup_vectors = {**neg_vectors, **pos_vectors}
# Prepare training data
words_train = np.concatenate((pos_samples, neg_samples))
# assign labels to positive and negative samples
y_train = [1] * len(pos_samples) + [0] * len(neg_samples)
# Stack columns to shuffle data and labels together
train = np.column_stack((words_train, y_train))
# Shuffle batch
np.random.shuffle(train)
# Detach data and labels
words_train = train[:, 0]
y_train = train[:, -1].astype(int)
x_train = np.array([np.append(wv1[w], sup_vectors[w]) for w in words_train])
# Append history
landmark_hist.append(len(landmarks))
v1_land = np.array([wv1[w] for w in landmarks])
v2_land = np.array([wv2_original[w] for w in landmarks])
v1_out = np.array([wv1[w] for w in non_landmarks])
v2_out = np.array([wv2_original[w] for w in non_landmarks])
alignment_loss = np.linalg.norm(v1_land-v2_land)**2/len(v1_land)
alignment_loss_hist.append(alignment_loss)
cumulative_alignment_hist.append(np.mean(alignment_loss_hist[-avg_window:]))
# out loss
alignment_out_loss = np.linalg.norm(v1_out-v2_out)**2/len(v1_out)
alignment_out_hist.append(alignment_out_loss)
cumulative_out_hist.append(np.mean(alignment_out_hist[-avg_window:]))
# all loss
alignment_all_loss = np.linalg.norm(wv1.vectors-wv2_original.vectors)**2/len(wv1.words)
alignment_all_hist.append(alignment_all_loss)
if debug:
# cosine loss
cos_in = np.mean([cosine(u, v) for u, v in zip (v1_land, v2_land)])
cos_out = np.mean([cosine(u, v) for u, v in zip(v1_out, v2_out)])
cos_loss_in_hist.append(cos_in)
cos_loss_out_hist.append(cos_out)
cumulative_cos_in.append(np.mean(cos_loss_in_hist))
cumulative_cos_out.append(np.mean(cos_loss_out_hist))
# Begin training of neural network
if cls_model == "nn":
history = model.train_on_batch(x_train, y_train, reset_metrics=False)
# history = model.fit(x_train, y_train, epochs=5, verbose=0)
# history = [history.history["loss"][0]]
elif cls_model == "svm_auto":
model.fit(x_train, y_train)
pred_train = model.predict_proba(x_train)
history = [log_loss(y_train, pred_train)]
elif cls_model == "svm_features":
x_train_ = get_features(x_train) # retrieve manual features
model.fit(x_train_, y_train)
pred_train = model.predict_proba(x_train_)
y_hat_t = (pred_train[:, 0] > 0.5)
acc_t = accuracy_score(y_train, y_hat_t)
history = [log_loss(y_train, pred_train), acc_t]
loss_hist.append(history[0])
# Apply model on original data to select landmarks
x_real = np.array([np.append(u, v) for u, v
in zip(wv1.vectors, wv2_original.vectors)])
if cls_model == "nn":
predict_real = model.predict(x_real)
elif cls_model == "svm_auto":
predict_real = model.predict_proba(x_real)
predict_real = predict_real[:, 1]
elif cls_model == "svm_features":
x_real_ = get_features(x_real)
predict_real = model.predict_proba(x_real_)
predict_real = predict_real[:, 1]
y_predict = (predict_real>t)
if update_landmarks:
landmarks = [wv1.words[i] for i in range(len(wv1.words)) if predict_real[i]<t]
non_landmarks = [wv1.words[i] for i in range(len(wv1.words)) if predict_real[i]>t]
# Update landmark overlap using Jaccard Index
isect_ab = set.intersection(prev_landmarks, set(landmarks))
union_ab = set.union(prev_landmarks, set(landmarks))
j_index = len(isect_ab)/len(union_ab)
overlap_hist.append(j_index)
cumulative_overlap_hist.append(np.mean(overlap_hist[-avg_window:])) # store mean
prev_landmarks = set(landmarks)
verbose_print("> %3d | L %4d | l(in): %.2f | l(out): %.2f | loss: %.2f | overlap %.2f | acc: %.2f" %
(iter, len(landmarks), cumulative_alignment_hist[-1],
cumulative_out_hist[-1], history[0], cumulative_overlap_hist[-1], history[1]),
end="\r")
wv1, wv2_original, Q = align(wv1, wv2_original, anchor_words=landmarks)
# Check if overlap difference is below threhsold
if np.mean(overlap_hist) > t_overlap:
break
# Print new line
verbose_print()
if plot == 1:
iter += 1 # add one to iter for plotting
plt.plot(range(iter), landmark_hist, label="landmarks")
plt.hlines(len(wv1.words), 0, iter, colors="red")
plt.ylabel("No. of landmarks")
plt.xlabel("Iteration")
plt.show()
plt.plot(range(iter), loss_hist, c="red", label="loss")
plt.ylabel("Loss (binary crossentropy)")
plt.xlabel("Iteration")
plt.legend()
plt.show()
plt.plot(range(iter), cumulative_alignment_hist, label="in (landmarks)")
plt.plot(range(iter), cumulative_out_hist, label="out")
plt.plot(range(iter), alignment_all_hist, label="all")
plt.ylabel("Alignment loss (MSE)")
plt.xlabel("Iteration")
plt.legend()
plt.show()
if debug:
plt.plot(range(iter), cumulative_cos_in, label="cos in")
plt.plot(range(iter), cumulative_cos_out, label="cos out")
plt.legend()
plt.show()
plt.plot(range(iter), cumulative_overlap_hist, label="overlap")
plt.ylabel("Jaccard Index", fontsize=16)
plt.xlabel("Iteration", fontsize=16)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
# plt.legend()
plt.tight_layout()
plt.savefig("overlap.pdf", format="pdf")
#plt.show()
if update_landmarks:
if not return_model:
return landmarks, non_landmarks, Q
else:
return landmarks, non_landmarks, Q, model
else:
return model
def main():
"""
Runs main experiments using self supervised alignment.
"""
# wv_source = "wordvectors/latin/corpus1/0.vec"
# wv_target = "wordvectors/latin/corpus2/0.vec"
# wv_source = "wordvectors/source/theguardianuk.vec"
# wv_target = "wordvectors/source/thenewyorktimes_1.vec"
wv_source = "wordvectors/semeval/latin-corpus1.vec"
wv_target = "wordvectors/semeval/latin-corpus2.vec"
# wv_source = "wordvectors/usuk/bnc.vec"
# wv_target = "wordvectors/usuk/coca_mag.vec"
# wv_source = "wordvectors/artificial/NYT-0.vec"
# wv_target = "wordvectors/artificial/NYT-500_random.vec"
plt.style.use("seaborn")
# Read WordVectors
normalized = False
wv1 = WordVectors(input_file=wv_source, normalized=normalized)
wv2 = WordVectors(input_file=wv_target, normalized=normalized)
wv1, wv2 = intersection(wv1, wv2)
landmarks, non_landmarks, Q = s4(wv1, wv2,
cls_model="nn",
n_targets=100,
n_negatives=100,
rate=1,
t=0.5,
iters=100,
verbose=1,
plot=1)
wv1, wv2, Q = align(wv1, wv2, anchor_words=landmarks)
d_l = [cosine(wv1[w], wv2[w]) for w in landmarks]
d_n = [cosine(wv1[w], wv2[w]) for w in non_landmarks]
sns.distplot(d_l, color="blue")
sns.distplot(d_n, color="red")
plt.legend()
plt.show()
if __name__ == "__main__":
main()