-
Notifications
You must be signed in to change notification settings - Fork 2
/
nr_timePSD_ipad_MVT.m
420 lines (364 loc) · 15.5 KB
/
nr_timePSD_ipad_MVT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
function nr_timePSD_ipad_MVT(sum_filedirnm)
% Creates a time-varying power spectral density plot and a time-varying
% coherence plot aligned to movement onset.
% Movement onset for each active movement epoch is determined using
% emg/accel/task button timing data.
% Created by S.Shimamoto 11/6/2008
% Revised by CDH (11/23/2011)
%% load ecog data
load(sum_filedirnm)
% %load .mat file containing ecog_lfp_raw_data
% [filename pathname]=uigetfile('*_ecog.mat','Select .mat file containing ecog/lfp raw data');
% cd(pathname);
% load([pathname filename]);
% filename=strrep(filename,'_ecog.mat','');% this takes off the _ecog ending of the filename;
% sbj = strrep(filename,'.mat',''); % outputname has no '.mat' extensions or any other misc tags; used later to save figures
% load(name)
% filename = name;
if ~isempty(strfind(sum_filedirnm,'ps_'))
sum_filedirnm_ps = strfind(sum_filedirnm,'ps_');
sbj = sum_filedirnm(sum_filedirnm_ps(1):sum_filedirnm_ps(1)+9);
elseif ~isempty(strfind(sum_filedirnm,'ec_'))
sum_filedirnm_ec = strfind(sum_filedirnm,'ec_');
sbj = sum_filedirnm(sum_filedirnm_ec(1):sum_filedirnm_ec(1)+9);
end
%% define variables
WINDOW = 512*Fs/1000;
NOVERLAP = 462*Fs/1000;
NFFT = 512*Fs/1000;
FRAME_ADVANCE=WINDOW-NOVERLAP;
PRE = 2; % time (sec) before movement onset
POST = 2; % time (sec) after
ADD = 1; % add more time to increase # windows in each snippet
BL = [2 1]; % baseline period before movement onset for calculating percent power change
% %% determine movement onset
%
% % if there are no previously saved onset times or if user wants to run
% % onset detection again, run detectEMG
% if ~exist('ecog.move_time')
%
% typedata = menu('Detect movement onset using EMG/accel/task button?','EMG','accel','task button');
% % note: typedata = 1 (EMG data), typedata = 2 (accel data), typedata = 3 (task button)
%
% % find active epoch timestamps from ecog structure
% epoch_ts = ecog.touch_time/Fs; % take the go signal to detect the movement onset and convert the time in sec
%
% % determine movement onset time on accel, emg or button
% if typedata==1
% move = emg.chan(1).raw;
% elseif typedata==2
% move = aux.chan(2).raw;
% else
% move = aux.chan(3).raw;
%
% end
% % move=eegfilt(move,Fs,1,4);
% %create time matching time vector
% nsamples = length(move); %#ok<NODEF>
% T = 1/(Fs);
% time = 0:T:T*(nsamples-1);
%
% % Detect move onset
% move_onset = DetectEMG(time,move,epoch_ts);
%
% % Detect move offset
% move_offset = DetectEMG(time,move,epoch_ts+2);
% else
% move_onset = epoch_ts;
% move_offset = epoch_off_ts;
% end
%
% ecog.move_time = int32(move_onset*Fs);
% ecog.move_off_time = int32(move_offset*Fs);
% save(name,'ecog','-append')
%
move_onset=ecog.active_time/Fs;
move_offset=ecog.rest_time/Fs;
%% calculate normalized time-varying PSD
% calculate spectrogram for all ecog/LFP. gives the fft of each segment in each column, and the next column moves in time by window-noverlap samples
% FOR MOVE ONSET
%---------------------
% remove movement onset that doesn't have enough time for pre-movement parsing
% if move_onset(1)<(PRE+(WINDOW/(2*Fs)))
% move_onset=move_onset(2:end);
% end
n_data_ch=n_ecog;
n_epochs = length(move_onset);
for i = 1:n_data_ch
data = ecog.contact_pair(i).remontaged_ecog_signal;
for jj=1:length(trials_ok); %1:n_epochs
j=trials_ok(jj);
% take snippet of data around emg_onset from selected ecog/LFP channel add offset to increase # windows for fft
first = int32(Fs*(move_onset(j)-(PRE))-WINDOW/2); % WINDOW/2 offset will make spectrogram start at moveonset-PRE at appropriately centered PSD
last = int32(Fs*(move_onset(j)+(POST+ADD))-WINDOW/2);
snip = data(first:last);
%calculate spectrogram of snippet 3D matrix 'S' has the fft power value stored in [frequncy,time,epoch number] arrangement
S(:,:,j) = spectrogram(snip,WINDOW,NOVERLAP,NFFT,Fs); %#ok<AGROW>
%spectrogram(snip,WINDOW,NOVERLAP,NFFT,Fs); %#ok<AGROW>
end
%find the magnitude of the fft represented in each column of S
S_mag=abs(S);
%calculate average across all epochs
%note: S_move_mag contains spectrograms from each epoch in the 3rd dimension. The average across all epochs are then calculated and stored in the
%3rd dimension of S_move_mag_mean. S_move_mag_mean collects averaged spectrogram for each data channel in the 3rd dimension.DO NOT GET CONFUSED!
S_mag_mean(:,:,i) = mean(S_mag,3); %#ok<AGROW>
% clear some variables before next loop, this is probably not necessary but do it just in case
clear data S S_mag;
end
%setup up the frequency (faxis)and time (taxis) axes data
%assignin('base','S_mag_mean',S_mag_mean)
[nfchans,nframes] = size(S_mag_mean(:,:,1));
nfchansteps = nfchans - 1;
maxfreq = Fs/2;
faxis = maxfreq*(0:nfchansteps)/nfchansteps;
t_res = FRAME_ADVANCE/Fs; % temporal resolution of spectrogram (sec)
taxis = (0:(nframes-1))* t_res;
taxis = taxis -PRE; %shift by PRE
% normalize to baseline values
if PRE<BL(1)
error(['The baseline period for PSD plot currently begins '...
'%d seconds before onset of movement. This value cannot be more than %d seconds '...
'as determined by variable PRE'],BL(1),PRE);
else
first = int32(((PRE-BL(1))/t_res)+1);
last = int32((PRE-BL(2))/t_res);
% to plot A with colors representing the log10 of power, uncomment this line:
A2plot = log10(S_mag_mean);
% to plot A with colors representing raw data values, uncomment this line:
% A2plot = S_move_mag_mean;
for i = 1:n_data_ch
for j = 1:nfchans
bl = A2plot(j,first:last,i);
blmean = mean(bl);
A2plot(j,:,i) = A2plot(j,:,i)/blmean;
end
end
end
% plot MOVEMENT ONSET spectrogram for all ecog/lfp data
hf1 = figure;
val1 = min(min(min(A2plot(1:100,:,:))));
val2 = max(max(max(A2plot(1:100,:,:))));
clims1 = [val1 val2];
data_ch_names = {'e12','e23','e34','e45','e56','LFP'};
% assignin('base','A2plot',A2plot)
% assignin('base','taxis',taxis)
% assignin('base','faxis',faxis)
% assignin('base','clims1',clims1)
for i = 1:n_data_ch
subplot(2,3,i);
hold(gca,'on');
% make the time-frequency plot
tmp1 = A2plot(1:100,:,i); %chopping A2plot will allow the whole colobar to be represented
faxis_new = faxis(1:100);
imagesc(taxis,faxis_new,tmp1,clims1);
% imagesc(taxis,faxis,A2plot(:,:,i),clims1);
%plot vertical bar at movement onset
plot([0 0],ylim,'k:');
hold(gca,'off');
% set the y-axis direction (YDir) to have zero at the bottom
set(gca,'YDir','normal');
% set xlim and ylim
set(gca,'Xlim',[0-PRE POST]);
set(gca,'Ylim',[0 120]);
% axis labels/title
xlabel('time (sec)');
ylabel('frequency (Hz)');
if i==1
title([sbj sprintf('\n') '# epochs=' num2str(n_epochs) sprintf('\n') data_ch_names{i} ' aligned to mvt onset']);
elseif i==M1_ch1
title(data_ch_names{i},'FontWeight','b');
else
title(data_ch_names{i});
end
end
% put a color scale indicator next to the time-frequency plot
colorbar([0.9307 0.1048 0.02354 0.8226]);
% % save the figure
% %saveas(hf1,[filename '_timePSD_Mvt_on'],'fig');
% saveas(hf1,[filename(1:11),'fig_spc_ecg_mvn_',filename(20:end-4)],'fig');
% print(hf1,[filename(1:11),'pdf_spc_ecg_mvn_',filename(20:end-4)],'-dpdf');
% FOR MOVE OFFSET
%---------------------
% remove movement onset that doesn't have enough time for pre-movement parsing
% if move_offset(1)<(PRE+(WINDOW/(2*Fs)))
% move_offset=move_offset(2:end);
% end
n_data_ch=n_ecog;
n_epochs = length(move_offset);
for i = 1:n_data_ch
data = ecog.contact_pair(i).remontaged_ecog_signal;
for jj=1:length(trials_ok)-1;
j = trials_ok(jj);%1:n_epochs
% take snippet of data around emg_onset from selected ecog/LFP channel add offset to increase # windows for fft
first = int32(Fs*(move_offset(j)-(PRE))-WINDOW/2); % WINDOW/2 offset will make spectrogram start at moveonset-PRE at appropriately centered PSD
last = int32(Fs*(move_offset(j)+(POST+ADD))-WINDOW/2);
snip = data(first:last);
%calculate spectrogram of snippet 3D matrix 'S' has the fft power value stored in [frequncy,time,epoch number] arrangement
S_off(:,:,j) = spectrogram(snip,WINDOW,NOVERLAP,NFFT,Fs); %#ok<AGROW>
end
%find the magnitude of the fft represented in each column of S
S_off_mag=abs(S_off);
%calculate average across all epochs
%note: S_move_mag contains spectrograms from each epoch in the 3rd dimension. The average across all epochs are then calculated and stored in the
%3rd dimension of S_move_mag_mean. S_move_mag_mean collects averaged spectrogram for each data channel in the 3rd dimension.DO NOT GET CONFUSED!
S_off_mag_mean(:,:,i) = mean(S_off_mag,3); %#ok<AGROW>
% clear some variables before next loop, this is probably not necessary but do it just in case
clear data S_off S_off_mag;
end
%setup up the frequency (faxis)and time (taxis) axes data
[nfchans,nframes] = size(S_off_mag_mean(:,:,1));
nfchansteps = nfchans - 1;
maxfreq = Fs/2;
faxis = maxfreq*(0:nfchansteps)/nfchansteps;
t_res = FRAME_ADVANCE/Fs; % temporal resolution of spectrogram (sec)
taxis = (0:(nframes-1))* t_res;
taxis = taxis -PRE; %shift by PRE
% normalize to baseline values
if PRE<BL(1)
error(['The baseline period for PSD plot currently begins '...
'%d seconds before onset of movement. This value cannot be more than %d seconds '...
'as determined by variable PRE'],BL(1),PRE);
else
first = int32(((PRE+BL(2))/t_res)+1);
last = int32((PRE+BL(1))/t_res);
% to plot A with colors representing the log10 of power, uncomment this line:
A2plot_off = log10(S_off_mag_mean);
% to plot A with colors representing raw data values, uncomment this line:
% A2plot = S_move_mag_mean;
for i = 1:n_data_ch
for j = 1:nfchans
bl = A2plot_off(j,first:last,i);
blmean = mean(bl);
A2plot_off(j,:,i) = A2plot_off(j,:,i)/blmean;
end
end
end
% plot MOVEMENT OFFSET spectrogram for all ecog/lfp data
hf1 = figure;
val1 = min(min(min(A2plot_off(1:100,:,:))));
val2 = max(max(max(A2plot_off(1:100,:,:))));
clims1 = [val1 val2];
data_ch_names = {'e12','e23','e34','e45','e56','LFP'};
for i = 1:n_data_ch
subplot(2,3,i);
hold(gca,'on');
% make the time-frequency plot
tmp1 = A2plot_off(1:100,:,i); %chopping A2plot will allow the whole colobar to be represented
faxis_new = faxis(1:100);
imagesc(taxis,faxis_new,tmp1,clims1);
% imagesc(taxis,faxis,A2plot(:,:,i),clims1);
%plot vertical bar at movement onset
plot([0 0],ylim,'k:');
hold(gca,'off');
% set the y-axis direction (YDir) to have zero at the bottom
set(gca,'YDir','normal');
% set xlim and ylim
set(gca,'Xlim',[0-PRE POST]);
set(gca,'Ylim',[0 120]);
% axis labels/title
xlabel('time (sec)');
ylabel('frequency (Hz)');
if i==1
title([sbj sprintf('\n') '# epochs=' num2str(n_epochs) sprintf('\n') data_ch_names{i} ' aligned to mvt offset']);
elseif i==M1_ch1
title(data_ch_names{i},'FontWeight','b');
else
title(data_ch_names{i});
end
end
% put a color scale indicator next to the time-frequency plot
colorbar([0.9307 0.1048 0.02354 0.8226]);
% %% Print figures
% num_fig = findall(0,'type','figure');
% for i = 1:num_fig
% print(i,'-dpsc2',['fig_temp_',sbj],'-append')
% end
%ps2pdf('psfile',['fig_temp_',sbj,'.ps'],'pdffile',['fig_pdf_',sbj,'.pdf'],'gspapersize','a4', 'deletepsfile', 1)
% % save the figure
% %saveas(hf1,[filename '_timePSD_Mvt_off'],'fig');
% saveas(hf1,[filename(1:11),'fig_spc_ecg_mvf_',filename(20:end-4)],'fig');
% print(hf1,[filename(1:11),'pdf_spc_ecg_mvf_',filename(20:end-4)],'-dpdf');
% %% calculate time-varying transformed coherence
%
% % calculate time-varying coherence if LFP exists
% if n_data_ch==6
% lfp = ecog.contact_pair(6).remontaged_ecog_signal;
% for i=1:n_data_ch-1
% data = ecog.contact_pair(i).remontaged_ecog_signal;
% for j = 1:length(trials_ok)%n_epochs
% first = int32(Fs*(move_onset(j)-(PRE))-WINDOW/2);% WINDOW/2 offset will make spectrogram start at moveonset-PRE at appropriately centered PSD
% last = int32(Fs*(move_onset(j)+(POST+ADD))-WINDOW/2);
% snip = data(first:last);
% snip_lfp = lfp(first:last);
% counter=1;
% coh_store=[];
% for k=1:nframes
% x = snip(counter:counter+WINDOW-1);
% y = snip_lfp(counter:counter+WINDOW-1);
% coh = mscohere(x,y,[],[],NFFT,Fs);
% coh_store = [coh_store coh]; %#ok<AGROW>
% counter = counter+FRAME_ADVANCE;
% end
% % populate 3D matrix C with coherence for each epoch
% C(:,:,j)=coh_store; %#ok<AGROW>
% end
% % find mean across all epochs
% C_mean(:,:,i) = mean(C,3); %#ok<AGROW>
% % populate 3D matrix C_trans with transformed coherence for each contact pair
% C_trans(:,:,i)=atanh(sqrt(C_mean(:,:,i))); %#ok<AGROW>
% end
% end
% % plot coherence
% if n_data_ch==6
% hf2 = figure;
% val3 = min(min(min(C_trans(1:100,:,:))));
% val4 = max(max(max(C_trans(1:100,:,:))));
% clims2 = [val3 val4];
% f=linspace(0,Fs/2,size(C_trans,1));
% for i=1:n_data_ch-1
% subplot(2,3,i);
% hold(gca,'on');
% tmp2 = C_trans(1:100,:,i);%chopping C_trans will allow the whole colobar to be represented
% f_new=f(1:100);
% imagesc(taxis,f_new,tmp2,clims2);
% % imagesc(taxis,f,C_trans(:,:,i),clims2);
% % set the y-axis direction (YDir) to have zero at the bottom
% set(gca,'YDir','normal');
% % set xlim and ylim
% set(gca,'Xlim',[0-PRE POST]);
% set(gca,'Ylim',[0 120]);
% %plot vertical bar at movement onset
% plot([0 0],ylim,'k:');
% hold(gca,'off');
% % axis labels/title
% xlabel('time (sec)');
% ylabel('frequency (Hz)');
% if i==1
% title([name(1:end-5) sprintf('\n') '# epochs=' num2str(n_epochs) sprintf('\n') data_ch_names{i} '-LFP aligned to mvt onset']);
% elseif i==M1_ch
% title([data_ch_names{i} '-LFP'],'FontWeight','b');
% else
% title([data_ch_names{i} '-LFP']);
% end
% end
% % put a color scale indicator next to the time-coherence plot
% colorbar([0.9307 0.1048 0.02354 0.8226]);
% end
%
%% save data
% SAS 6/9/2009: 'A2plot' included in output file, 'S_move_mag_mean' (the
% unnormalized version of 'A2plot') is excluded because of redundancy in
% saved variables.
% save variables and figure
%ALC 9/10/09: added if/else clause to allow code to save data without
%an LFP channel by ignoring C-trans variable
% if n_data_ch==6
% save([name(1:end-5) '_timePSD_Mvt.mat'],'A2plot','C_trans','faxis','taxis','move_onset','M1_ch');
% saveas(hf1,[name(1:end-5) '_timePSD_Mvt'],'fig');
% saveas(hf2,[name(1:end-5) '_timeCOH_Mvt'],'fig');
% else
% save([filename(1:11),'anl_spc_ecg_mov_',filename(20:end)],'A2plot','A2plot_off','faxis','taxis','move_onset','move_offset','M1_ch','S_mag_mean','S_off_mag_mean');
% %save([filename '_timePSD_Mvt.mat'],'A2plot','A2plot_off','faxis','taxis','move_onset','move_offset','M1_ch','S_mag_mean','S_off_mag_mean');
% saveas(hf1,[name(1:end-5) '_timePSD_Mvt'],'fig');
% end
% return;